آنالیز هم‌گامسازی شبکه‌های دینامیکی پیچیده با کوپلینگ ترکیبی و کاربرد آن
در مدار چوآ

علي کاظمی

کلمات کلیدی: شبکه‌های دینامیکی پیچیده، هم‌گامسازی، قضیه لیاپانوف–کراسووسکی، سیستم‌ها زمان‌تاخیری، مدار چوآ.

Synchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit

Ali Kazemy

Abstract: Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these networks. This paper deals with the synchronization of complex dynamical networks with time-delays both in the states of the nodes and coupling connections between them. Moreover, constant coupling, discrete-delay coupling, and distributed-delay coupling are considered to form a hybrid coupling. Therefore, larger class and more complicated coupled complex dynamical networks can be considered for the synchronization problem. After defining the synchronization definition, some criteria are obtained and presented in the form of linear matrix inequalities with help of the Lyapunov–Krasovskii theorem to ascertain the synchronization between each node of the network. Finally, the method is utilized for synchronization analysis of coupled Chua’s circuits which has been simulated numerically.

Keywords: Synchronization, Complex dynamical network, Lyapunov–Krasovskii, Time-delayed systems, Chua’s circuit.
به روش به‌ینه‌ای در دینامیکی دیگر‌ویکا در کل ارتباطی بین آن‌ها پرسی می‌شود که این نشانه را برای نبودن علاوه بر این، ژنت و بررسی کلاس‌ و بازیاری از شیکه‌های گونه‌ای از کلینگن‌هایی نتیجه‌ی نیاز به تاخیر-گست. ۲) و تاخیر-بزنگ در می‌تواند است.

براس‌فیک لیاپونوف-کاروسوسکی، انتقال‌پذیر شیکه‌هایی و با انتقال‌پذیری شیکه‌هایی به شیکه‌هایی از کلینگن‌هایی از کلینگن‌هایی از کلینگن‌هایی.

به همراه اتصالات کوپلینگ و ماتریس حقیقی قطری با کننده ای مقاله گام بودن در پایان، از نظر گرفته شده است. بر اساس قضیه.

تنگه‌ای در شیکه‌هایی باید بیش‌تر در شیکه‌هایی باعث کاهش کارایی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

هم‌اکنون مقاله به شیکه‌هایی پیچیده مخفی. برای اولین بار در مقاله، شیکه‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

در عمل به‌ینه‌ای درب‌داری در کلینگن‌هایی باید به‌ینه‌ای درب‌داری در کلینگن‌هایی رفتارهای پیچیده با تاخیر در شیکه‌هایی از کلینگن‌هایی، از هم‌سازی و نیز در بخش باید برای برخورد ایاست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

به بیان کاته‌یک و نیز در بخش باید برای برخورد ایست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

به بیان کاته‌یک و نیز در بخش باید برای برخورد ایست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

به بیان کاته‌یک و نیز در بخش باید برای برخورد ایست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

به بیان کاته‌یک و نیز در بخش باید برای برخورد ایست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

به بیان کاته‌یک و نیز در بخش باید برای برخورد ایست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

به بیان کاته‌یک و نیز در بخش باید برای برخورد ایست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

به بیان کاته‌یک و نیز در بخش باید برای برخورد ایست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.

به بیان کاته‌یک و نیز در بخش باید برای برخورد ایست. ۲۱) عنوان نمونه، مرجع (۱۱) آن‌ها به‌ینه‌ای درب‌داری در کلینگن‌هایی دیگر‌ویکا در حالی‌های گونه‌ای را در پیش آورد. در صورتی که علت‌های اصلی این نتایج مربوط به شیکه‌هایی باعث کاهش کارآیی، کاهش حاشیه پایداری، و افزایش توان به مخابرات امن، تولید نوسانات منظم در قلب انسان، و هم.
توضیح: 1. این مدل نسبت به مقالات قبلی منتشر شده در این زمینه کمتر است. در مدل دنکنگ گرفته شده گرگ دارای نام‌های (Lorenz) در بردار حالت‌های خود می‌باشد که با نام‌های از متغیرهای مول دنکنگ (M) در برنامه‌های موجود در کوپلینگ (L) می‌باشد.

فرض ۱: فضای مالایی اجلاس‌های کوپلینگ باید شرایط زیر ارزیابه شود:

\[G_i'(r) = G_j'(r) \geq 0, \quad i \neq j, \quad q_i, q_j = 1,2,3. \]

فرض ۲: شرایط زیر ارزیابه شود:

\[\sigma^* = \hat{f}(x_i(t)) - f_i(x_i(t)) \leq \sigma^*, \quad r = 1,2,\ldots,k. \]

توضیح: 2. شرط دنکنگ گرفته شده پایه‌ای مول لهستانی است و این آن را به زبان فعال، خاص گرگ دارای نام‌های (Lipschitz) شناخته می‌شود. به دنبال آنگاه شرط پایه در فرض ۲ معنی دارد با شرایط نهایی این که که به شرایط لیپشیتز است و یک شرایطی است که به شکل سیستم‌های آلیک، شکایت‌ها شناخته شده از جمله سیستم‌های لورنزن (Rossler) را نشان می‌دهد.

تعریف ۱: سیستم ۱ گرفته شده که پایه‌ای هر شرایط اولیه (چن) (Chen, 1994) را گویند. اگر

\[\Pi_{0}(s) = i, i = 1,2,\ldots,N, \]

\[\lim_{t \to \infty} ||x(t) - x_j(t)|| = 0, \quad i, j = 1,2,\ldots,N \]

که نرم اقلیدسی است. یک راه ساده در نمایش فرض کنیک به

\[x(t) = \left[x_i(t), x_j(t) \right]^{T}. \]

\[F(x(t)) = \left[f_i(x_i(t)), f_j(x_j(t)) \right]^{T}. \]

با استفاده از نمایش مالایی سیستم گرگ مول شکه (1) را به صورت زیر نوشته:

\[x(t) = -(I_1 \otimes C)x(t) + (I_1 \otimes A)x(t - \tau) + (I_1 \otimes B_f)F(I_2 \otimes M)x(t) + \left(I_1 \otimes B_f \right) + \left(G^{(1)} \otimes \Gamma_1 \right)x(t) + \left(G^{(1)} \otimes \Gamma_1 \right)x(t - \tau) + \left(G^{(1)} \otimes \Gamma_1 \right)\int_{0}^{t} x(s)ds. \]
\[\begin{align*}
\Pi_{17} &= PB_2 + W_1B_2 + \tau Z_2B_2 + rO_1B_2, \\
\Pi_{18} &= -rC'Z_2B_2 - rC'O_2B_2 - NG_0^{(3)}T_2'\Omega B_2, \\
\Pi_{19} &= -C'W_1 - NG_0^{(3)}T_1'W_1 - NG_0^{(3)}(\tau Z_1' + \tau O_1)\Gamma, \\
&\quad + W_{21} + W_{31} - \frac{1}{\tau}O_{12}' - NG_0^{(3)}(\tau Z_{12}' + \tau O_{12})\Gamma, \\
&\quad + NG_0^{(3)}C\Gamma, - NG_0^{(3)}T_1'\Omega, \quad \Omega, \\
\Pi_{20} &= -NG_0^{(3)}A^T\Omega, \\
\Pi_{21} &= Q_{12} - \frac{1}{\tau}Z_{22} + rA'Z_2A + rA'O_2A \\
&\quad - M' L, \quad M - D' L, L, D. \\
\Pi_{22} &= -Q_{22} + M' L, \quad L, A, \quad A', \Omega B, \quad A. \\
\Pi_{23} &= Q_{23} + A'\Omega B, \quad D' L, \quad L, A. \\
\Pi_{24} &= A'W_2 - W_3 + \frac{1}{\tau}Z_{23}, \\
\Pi_{25} &= A'W_3 - W_2 - NG_0^{(3)}A^T\Omega, \\
\Pi_{26} &= -R - \frac{1}{\tau}O_2 - NG_0^{(3)}T_2\Omega, \\
\Pi_{27} &= -NG_0^{(3)}T_2'\Omega B, \quad \Pi_{28} = -NG_0^{(3)}T_2'\Omega B, \\
\Pi_{29} &= -NG_0^{(3)}T_2'W_2 - W_3, \\
\Pi_{30} &= -NG_0^{(3)}T_2'W_1 - W_3, \quad W_{33} + \frac{1}{\tau}O_{13}' - NG_0^{(3)}T_3'\Omega, \\
\Pi_{31} &= Q_{13}, \quad \Pi_{42} = Q_{23} + B'_3\Omega B, \quad J, \\
\Pi_{43} &= B'_3W_2, \quad \Pi_{44} = B'_3\Omega B, \\
\Pi_{45} &= B'_3W_3 - NG_0^{(3)}B_1'\Omega B, \quad \Pi_{46} = -Q_{23} - L_1, \\
\Pi_{47} &= Q_{33} - J_2, \quad \Pi_{48} = -Q_{23}, \\
\Pi_{49} &= B'_3W_2, \quad \Pi_{50} = Q_{33} + B'_3\Omega B_2 - L_2, \\
\Pi_{51} &= \frac{1}{\tau}Z_{13}, \quad \Pi_{52} = B'_3W_3 - NG_0^{(3)}B_2'\Omega, \\
\Pi_{53} &= -NG_0^{(3)}W_3'\Gamma, \\
\Pi_{54} &= -NG_0^{(3)}W_3'\Gamma, \\
&\quad - \frac{1}{\tau}O_{14} - NG_0^{(3)}(W_3'\Gamma, \tau W_3'\Gamma) - NG_0^{(3)}T_3'\Omega, \\
&\quad - \frac{1}{\tau}Z_{33} - \frac{1}{\tau}O_{23}, \quad rC_3Z_3' + rC_3O_3 - C_3'O_3. \\
\end{align*} \]

اگر باشد، ماتریس‌های دبین‌کردنی (M) و A، B، C، D دستگاه‌های

\[X(t) = \sum_{i=1}^{n} V_i(t), \quad k \in [1, n] \]

\[V_i(t) = x_i'(t) (U \otimes P) x_i(t), \]

\[\Pi_{11} = -PC - C'P - NG_0^{(3)}(P_1, \Gamma_1, P) + Q_{11} + R \\
&\quad - W_1'C - C\Omega_1 - W_1'G_1 + \frac{1}{\tau}Z_{12} + \frac{1}{\tau}Z_1 + rO_1, \\
&\quad - rZ_{31}'Z_1 - rO_1 - C_3'O_3, ? C_3'O_3. \\
\]

\[X(t) = \sum_{i=1}^{n} V_i(t), \quad k \in [1, n] \]

\[V_i(t) = x_i'(t) (U \otimes P) x_i(t), \]

\[\Pi_{11} = -NG_0^{(3)}(P_1, \Gamma_1, P) - W_3 + NG_0^{(3)}C'\Omega_1 \\
&\quad - M' J_1, \quad M - D' J_1, L, D. \\
\]

\[V_i(t) = x_i'(t) (U \otimes P) x_i(t), \]

\[\Pi_{11} = -NG_0^{(3)}(P_1, \Gamma_1, P) - W_3 + NG_0^{(3)}C'\Omega_1 \\
&\quad - M' J_1, \quad M - D' J_1, L, D. \\
\]

\[\frac{1}{\tau}Z_{22} - \frac{1}{\tau}O_{22}, \quad rC'_3Z_3, \quad C_3'O_3. \\
\]

\[X(t) = \sum_{i=1}^{n} V_i(t), \quad k \in [1, n] \]

\[V_i(t) = x_i'(t) (U \otimes P) x_i(t), \]

\[\Pi_{11} = -NG_0^{(3)}(P_1, \Gamma_1, P) - W_3 + NG_0^{(3)}C'\Omega_1 \\
&\quad - M' J_1, \quad M - D' J_1, L, D. \\
\]

\[V_i(t) = x_i'(t) (U \otimes P) x_i(t), \]

\[\Pi_{11} = -NG_0^{(3)}(P_1, \Gamma_1, P) - W_3 + NG_0^{(3)}C'\Omega_1 \\
&\quad - M' J_1, \quad M - D' J_1, L, D. \\
\]

\[\frac{1}{\tau}Z_{22} - \frac{1}{\tau}O_{22}, \quad rC'_3Z_3, \quad C_3'O_3. \\
\]
مشتق عبارت دوم رابطه (5) برای است با
\[V_1(t) = \sum_{k=1}^{N} \sum_{j=1}^{N} \left[\frac{2}{\tau} (x_k(t) - x_j(t))^T \left[-PC(x_k(t) - x_j(t)) \right] \right] + PA(x_k(t) - x_j(t)) + PB_1(f(Mx_k(t)) - f(Mx_j(t))) + PB_2(f(Dx_k(t) - r)) - f(Dx_j(t) - r)) \]

\[-NG_1^{pl} P \big((x_k(t) - x_j(t)) \big) - NG_2^{pl} P \big((x_k(t) - x_j(t)) \big) - NG_3^{pl} P \big((x_k(t) - x_j(t)) \big) \]

\[\text{مشتق عبارت سوم رابطه (5) برای است با} \]

\[V_2(t) = \mathcal{G}(t) \]

\[= \left[\begin{array}{ccc} U \otimes Q_{11} & U \otimes Q_{12} & U \otimes Q_{21} \\ * & U \otimes Q_{22} & U \otimes Q_{23} \end{array} \right] \mathcal{G}(t) \]

\[- \mathcal{G}(t - \tau) \left[\begin{array}{ccc} U \otimes Q_{11} & U \otimes Q_{12} & U \otimes Q_{21} \\ * & U \otimes Q_{22} & U \otimes Q_{23} \end{array} \right] \mathcal{G}(t - \tau). \]

\[\mathcal{G}(t) = \left[\begin{array}{c} x(t) \\ f(x(t)) \\ f^2(x(t)) \end{array} \right] \]

که در آن \[x(t) = x^T(t) \]

\[f(x(t)) = f^T(x(t)) \]

\[f^2(x(t)) = f^T(f(x(t))) \]

\[\text{مشتق عبارت چهارم رابطه (5) برای است با} \]

\[V_3(t) = \int_{t-\tau}^{t} \left[\mathcal{G}(t) \right] \mathcal{G}(t) \right] \]
آنالیز همگامسازی شبکه‌های دینامیکی پیچیده با کوپلینگ ترکیبی و کاربرد آن در مدار چوآ

علي کاظمی

Journal of Control, Vol. 14, No. 3, Fall 2020

$$V_i(t) = \tau \left[x(t)^T \left[\begin{array}{c} U \otimes Z_{11} & U \otimes Z_{12} & \cdots & U \otimes Z_{1n} \end{array} \right] x(t) \right]$$

$$-\int_{t_{i-1}}^{t_i} \left[x(s)^T \left[\begin{array}{c} U \otimes Z_{11} & U \otimes Z_{12} & \cdots & U \otimes Z_{1n} \end{array} \right] x(s) \right] ds$$

$$+ \tau \left[x(t)^T \left[\begin{array}{c} U \otimes O_{11} & U \otimes O_{12} & \cdots & U \otimes O_{1n} \end{array} \right] x(t) \right]$$

$$-\int_{t_{i-1}}^{t_i} \left[x(s)^T \left[\begin{array}{c} U \otimes O_{11} & U \otimes O_{12} & \cdots & U \otimes O_{1n} \end{array} \right] x(s) \right] ds,$$ \hspace{1cm} (13)

$$\Phi_i(t) = \left[\begin{array}{c} \Phi_i(t) \\ \Phi_i(t) \\ \Phi_i(t) \end{array} \right]$$

$$= \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right],$$ \hspace{1cm} (15)

$$\Phi_i(t) = \left[\begin{array}{c} \Phi_i(t) \\ \Phi_i(t) \\ \Phi_i(t) \end{array} \right]$$

$$= \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right],$$ \hspace{1cm} (16)

با مشتق‌گیری از عبارت چهارم رابطه (5) نسبت به t داریم:

$$V_i(t) = 2 \int_{t_{i-1}}^{t_i} x(s) ds \times$$

$$\left[\begin{array}{c} U \otimes W_{11} & U \otimes W_{12} & \cdots & U \otimes W_{1n} \end{array} \right] x(t)$$

$$+ \left[\begin{array}{c} U \otimes W_{21} & U \otimes W_{22} & \cdots & U \otimes W_{2n} \end{array} \right] x(t),$$ \hspace{1cm} (14)

$$V_i(t) = \sum_{i=2}^{n_i} \sum_{j=1}^{n_j} \left[2(x_i(t) - x_j(t))^T (W_{ij}(x_i(t) - x_j(t))) + (W_{ij} + W_{ji})(x_i(t) - x_j(t)) \right]$$

$$-2(x_i(t) - x_j(t))^T (W_{ij}(x_i(t) - x_j(t)))$$

$$+ W_{ij}(x_i(t) - x_j(t)),$$ \hspace{1cm} (16)
با فرض 0.25، قضیه 1 را به این‌سانه اعمال کرده و بینه‌شی زمان تاخیر کوپلگر که هم‌گام بودن کلی را در همان پایه کمک برای یکی از نرم‌افزارهای طراحی تاخیر ذکر شده، مقدار تاخیر ماکسیمیمی‌ترین مقدار تاخیر باشد. نتیجه‌ی این قضیه، در دو پایه اصل‌های بسیار بدین ترتیب می‌باشد: تأثیر با محدودیت فضا از ذکر مقادیر انجام شده است.

توجه 4. با مدل‌بندی بودن مقادیر کیکی از تاخیرهای 2 با این‌سانه می‌توان بینه‌شی زمان تاخیر کوپلگر را با استفاده از روش‌های مربوط به دیگر مقادیر کوپلگر و روش‌های ضریبی 1 و 2 بررسی کرده و می‌گردد در صورتی که سیستم‌های ماکسیمیمی‌ترین مقدار باشد در تخمین‌های شده در قضیه 1 با پایه بودن، مقدار تاخیر را افزایش دهنده نمی‌کند.

توجه 4. بینه‌شی زمان تاخیر کوپلگر که هم‌گام بودن کلی را با این‌سانه می‌توان نشان داد که

\[V(t) \leq \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \xi_i(t) \Psi_{ij}(t). \] \hspace{1cm} (18)

که در (4) تعریف شده و

\[\xi_i(t) = (x_i(t) - x_i(t)) \left(x_i(t) - x_i(t) \right)^T. \]

\[f(x_i(t) - x_i(t)) \left(x_i(t) - x_i(t) \right)^T. \]

\[f(M_{xx}(t)) - f(M_{xx}(t)), \]

\[f(D_{xx}(t)) - f(D_{xx}(t)), \]

\[\int_{x_i(t)}^{x_i(t)} (x_i(s) - x_i(s)) ds \int_{x_i(t)}^{x_i(t)} (x_i(s) - x_i(s)) ds. \]

اگر برای یک صفت باشند، آنگاه \(0 < k < \infty \) خواهد بود. به توجه به تعریف 1، نتیجه می‌گردد که سیستم (1) طوری کلی هم‌گام است.

4- شیب‌سازی یک سیستم دیفرانسیل

مادری تاخیرها را با ایزو‌متر هایی نشان می‌دهد که در آن بردار خطی هم‌گام‌سازی صورت می‌گیرد. \(k = 1.23 \). تعریف شده است. سیستم‌های هم‌گام با یکی یکی در هر کدام از دو پایه اصل هم‌گام می‌باشد.

\[\begin{bmatrix} 0.1 & 0 & 0 \\ 0.2 & 0 & -0.1 \\ 0 & 0 & 4.7143 \end{bmatrix} \]

\[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \]

\[\begin{bmatrix} 0 & 0 \\ 0 & 0.1 \\ 0 & 0 \end{bmatrix} \]

\[\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \]

\[\begin{bmatrix} 3.1429 & -11 \\ -1 & 1 & -1 \\ 0 & 14.2860 & 0 \end{bmatrix} \]

\[\begin{bmatrix} 0 \end{bmatrix} \]

\[\begin{bmatrix} 1 \end{bmatrix} \]

\[\begin{bmatrix} 0 \end{bmatrix} \]

\[\begin{bmatrix} 0 \end{bmatrix} \]

\[\begin{bmatrix} 0 \end{bmatrix} \]
نتیجه‌گیری

در این مقاله مسئله تحلیل هم‌گامسازی شبکه‌های دینامیکی پیچیده به همراه تاخیر در حالت‌های گره و کوپلینگ ارتباطی انجام گرفت. علاوه بر این، جهت بررسی کلاس وسیعی از این شبکه‌ها، ترکیبی از کوپلینگ تایپ، کوپلینگ با تأخیر تغییر شده در نظر گرفته شد. سپس بر اساس قضیه لیاپانوف-کراسووسکی، شرایطی در قالب نامساوی‌های خطی به منظور تضمین هم‌گام بودن رفتار گره‌های شبکه استخراج و ارائه شدند. در انتهای نیز روش محاسبه روی پیک مثال از مدار‌های چوآی به هم کوپل شده، عملیات کاربردی آن بررسی شد.

مراجع

\[k = 1.2, 3, e_k(t) \]