[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 11, Issue 3 (Journal of Control, V.11, N.3 Fall 2017) ::
JoC 2017, 11(3): 51-58 Back to browse issues page
Robust Adaptive Control for a Class of Uncertain Nonlinear Systems: Integral Sliding Mode Control Approach Mehdi Golestani, Saeid Ebadollahi, Seyed Majid Smaeilzadeh
Mehdi Golestani Mr * 1, Saeed Ebadollahi Dr2, Seyed Majid Smaeilzadeh Dr2
1- MSc 1Young Researchers and Elite Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2- Assistant Professor Iran University of Science and Technology
Abstract:   (1275 Views)

This paper investigates the problem of finite-time stabilization of a class of uncertain nonlinear systems and a controller is proposed based on combination of integral sliding mode control with finite-time state feedback. The proposed controller consists of two parts. One part rejects matched uncertainties and the other part provides finite time stability. An adaption mechanism is also employed to estimate unknown parameters of the system. The proposed control law guarantees finite-time convergence of the sliding variable in the presence of uncertainties and unknown parameters. By elimination of the reaching phase, in which the system states are quite sensitive to any uncertainties or disturbances, the robustness of the system is guaranteed throughout the entire response. Furthermore, the upper bound of disturbance and uncertainties is not required to be known in advance which makes the suggested controller more flexible in terms of implementation.

Keywords: Nonlinear control, robust adaptive control, integral sliding mode control, finite time state feedback.
Full-Text [PDF 1217 kb]   (386 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/09/4 | Accepted: 2017/06/4 | Published: 2017/09/3
References
1. Galicki, A. Finite-time control of robotic manipulators, Automatica, 2015, 51, 49-54 [DOI:10.1016/j.automatica.2014.10.089]
2. Galicki, A. Finite-time trajectory tracking control in a task space of robotic manipulators, Automatica, 2016, 67, 165-170 [DOI:10.1016/j.automatica.2016.01.025]
3. Golestani, M.; Mohammadzaman, I.; Yazdanpanah, M.J.; Vali, A.R. Application of finite-time integral sliding mode to guidance law design. J. Dyn. Syst-T. ASME 2015, 137, 114501-4
4. Xiao, B.; Hu, Q.; Zhang, Y. Finite-Time Attitude Tracking of Spacecraft With Fault-Tolerant Capability, IEEE Transactions on Control Systems Technology, 2015, 23, 1338–1350 [DOI:10.1109/TCST.2014.2364124]
5. Yu, S.; Yu, X.; Shirinzadeh, B.; Man, Z. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 2005, 41, 1957–1964 [DOI:10.1016/j.automatica.2005.07.001]
6. Golestani M., Mobayen S., Tchier F, Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties. IET Control Theory & Applications, 2016, DOI: 10.1049/iet-cta.2016.0163 [DOI:10.1049/iet-cta.2016.0163]
7. Mobayen, S. Finite-time robust-tracking and model-following controller for uncertain dynamical systems. J. Vib. Control, 2014, 22, 1117-1127 [DOI:10.1177/1077546314538991]
8. Furat, M.; Ekber, I. Second-order integral sliding-mode control with experimental application. ISA Trans. 2014, 53, 1661-1669 [DOI:10.1016/j.isatra.2014.05.030]
9. Xu, H.J.; Mirmirani, M.D.; Ioannou, P.A. Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dynam. 2004, 27, 829-838 [DOI:10.2514/1.12596]
10. Yang, J.; Zolotas, A.; Chen, W.H.; Michail, K.; Li, S.H. Robust control of nonlinear MAGLEV suspension system with mis-matched uncertainties via DOBC approach. ISA Trans. 2011, 50, 389-396 [DOI:10.1016/j.isatra.2011.01.006]
11. Taleb, M.; Plestan, F.; Bououlid, B. An adaptive solution for robust control based on integral high-order sliding mode concept. Int. J. Robust Nonlinear Control 2014, 25, 1201–1213 [DOI:10.1002/rnc.3135]
12. Mobayen, S. An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems, 2015, DOI 10.1007/s11071-015-2180-4
13. Mobayen, S.; Tchier, F. Design of an adaptive chattering avoidance global sliding mode tracker for uncertain non-linear time-varying systems, Transactions of the Institute of Measurement and Control, 2016, DOI: 0142331216644046.
14. Zong, Q.; Zhao, Z.-S; Zhang J. Higher order sliding mode control with self-tuning law based on integral sliding mode. IET Control Theory Appl. 2010, 4, 1282–1289 [DOI:10.1049/iet-cta.2008.0610]
15. Ferrara A., Rubagotti M.: 'Second-order sliding mode control of a mobile robot based on a harmonic potential field', IET Control Theory Appl., 2008, 2, (9), pp. 807–818 [DOI:10.1049/iet-cta:20070424]
16. Levant A.: 'Universal SISO sliding-mode controllers with finite-time convergence', IEEE Trans. Autom. Control, 2001, 46, (9), pp. 1447–1451 [DOI:10.1109/9.948475]
17. Zhang, X., Feng, G., Sun, Y.: 'Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems', Automatica, 2012, 48, 499–504 [DOI:10.1016/j.automatica.2011.07.014]
18. Mobayen, S. Fast Terminal Sliding Mode Controller Design for Nonlinear Second-Order Systems with Time-Varying Uncertainties. Complexity 2014, 21, 239-244 [DOI:10.1002/cplx.21600]
Send email to the article author

Add your comments about this article
Your username or Email:

Write the security code in the box >


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golestani M, Ebadollahi S, Smaeilzadeh S M. Robust Adaptive Control for a Class of Uncertain Nonlinear Systems: Integral Sliding Mode Control Approach Mehdi Golestani, Saeid Ebadollahi, Seyed Majid Smaeilzadeh . JoC. 2017; 11 (3) :51-58
URL: http://joc.kntu.ac.ir/article-1-401-en.html


Volume 11, Issue 3 (Journal of Control, V.11, N.3 Fall 2017) Back to browse issues page
مجله کنترل Journal of Control
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 3660