[ Downloaded from joc.kntu.ac.ir on 2026-01-29 ]

[ DOI: 10.61186/joc.17.2.1]

| J S dlexo
s ISSN (print) 2008-8345
! ISSN (online) 2538-3752
e B3 Yo Flhs
J/q»r{'i‘;"‘,%
V=YY amio NP Y Ol oY oyled Vil

(B B (Lol 1O Gans (5 WO p (o SN
Yu.bo)}:u 6)[;19 S ‘\Lsgﬁ‘ O)‘).M Lo

vmohammadzadeh@email.KNtu.ac.ir ol 1 «ol,g ¢ owsb Wl jons |5 mio oKils o J 27 punilige (6 5575 (5 ol

aliyari@Kntu.ac.ir o 1«65 g sb cp ol it g imins oKl (G wlign 08Kt 0855 5150 05 8 Ll "

VY VEY/00/00 1L s

rb O3 313 5 5 oile sl 53 sy Bles 5ladibe 53 bt s 3 Shos Gooe (6,55 2 e Slad e — O
(st i Slaptr (o lolis (Sla 2y 155 n 0313 Lo ad e () (6 0] B 5 (st o8 Coale 4y ¢ 5 50 o) &S Wlosls 0L 5 5 )
S sl sl 3 0n ST O 03 28 ga ol ol T s ke o Gres (5,50 05 3 Blamn 5 (bl I 15 e
Sl Ll o5 511 Gooe (6,8 5k 5335 g0 sl 5 la ) b o sl e lin ol 53 5501k dal 5 nlie ke
S a3 bl dal g Gl st 2 Gt glulid oj s 53 ealital BB slaylpl I (el i 530 42 5] =S s G E
S5 ladis 3l (glarws Ol ke (sladde .ol st b Il (sl lelid 3 Olgy piie gladabe 5,8 1 ags cpl o
OS5 b Ll s 1 sl gloesls 5 Sl g dadde ol ol e 85,8 oo 55 Wge gladbs 05 8 53 45 At Gras
S pimpen o Lead okd al 5 e o) (sl (o lesls W LB (ST e 35 5 8L e S
Uadute ol 5 Shos o s oo OLES ek plowil dafllan .o dal g 1) el 0257 (Slaptonn s rlate &7 35 Ladide ol 51 sl sl
Wl B BB 3 g 0 KNS 5 iy sladibe L

S s, 555 Olg ke ladde o s & Slapto 2 Lalid (Goas (6,83 (sladbe 1031 guds”

Deep Learning based Models for Nonlinear System Identification
Vahid Mohammadzadeh Ayooghi and Mahdi Aliyari-Shoorehdeli

Abstract — Deep learning-based models appropriately perform in modeling complex problems in
computer vision and natural language processing (NLP). With this in mind, nonlinear system identification
methods can benefit from tools developed in deep learning, leading to enriched frameworks to choose from.
For this purpose, we are going to review some potential structures and methods of deep learning that can
be used in nonlinear system identification. Although we comprehensively review the applicable tools of
deep learning to system identification, this paper mainly focuses on using latent variable models (LVM)
for identifying nonlinear state space models. LVMs are powerful tools for extending generative models
primarily developed for only generating static data, yet by a combination of recurrent neural network
(RNN) and variational auto-encoders (VAE), they can also generate sequential data. A structured version
of introduced models compatible with control systems will also be given. The study shows that the deep
learning models have a comparative performance to traditional and classic ones.

Keywords: Deep learning, nonlinear system identification, latent variable models, VA
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® Evidence lower bound (ELBO)

10 Kullback-Leibler divergence

11 Posterior probability distribution

12 Variational EM

13 Restricted Boltzmann machine (RBM)
14 Energy-based models (EBM)

15 Neural networks

%6 Decoder network
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t Sampling

2 Marginalization

% Intractable

4 Approximate method

5 Stochastic approximate

6 Deterministic approximate
" Variational distribution

8 Jensen’s inequality
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* Reparametrization trick
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! Recognition network — Encoder network
2 General approximation property
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11 Time steps

12 Conditional independency
13 Causal-in-time

14 Binary variable

15 Free parameters

16 Conditioning set

7 Temporal structure

18 Temporal dependency

1 mth-order Markov model
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L ELBO lightening

2 Importance weighted auto-encoders
® Adversarial auto-encoder

4 Static data

% Sequential latent variable models

6 Sequence

’ Physical dimension

8 Time series

® Temporal information

10 Time series analysis
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5 State space models

6 State variable

" Observation model (emission model)
8 State transition model
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! Bayesian network (Belief network)
2 Correlation analysis

3 Mutual information
4Autoregressive models
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" Deep state space models

8 Recurrent neural network

° Variable length sequence

10 Deterministic maps

1 Long short-term memory (LSTM)
12 Gated recurrent unit (GRU)
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! Marginalizing out

2 Exact inference

% Kalman filter

4 Unscented Kalman filter
5 Extended Kalman filter
® Approximation method
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2 Deep Kalman Filter (DKF)
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