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Abstract— This paper addresses the problem of the fault
detection and isolation of the two-dimensional (2D) linear
Roesser systems with stochastic communication. Stochastic
data transmission from the plant to the observer through
the network is considered to reduce the required bandwidth
of the communication network significantly. In this regard,
the fault detection and isolation problem, while being robust
with respect to the disturbances, is modeled as two H_co and
a H_- optimization problems. The overall design approach
of the observer with stochastic data transmission is
proposed as a linear optimization problem with linear
matrix inequality (LMI) constraints to get the best robust
performance in fault detection and isolation while
maintaining the stability of the observer. Finally, the
effectiveness of the developed robust fault detection and
isolation observer with stochastic reduced output data
transmission is shown through some simulations.

Keywords: Fault Diagnosis, Roesser Systems, Stochastic
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I.INTRODUCTION

I NDUSTRIAL processes, including thousands of sensors,

actuators, and control loops, are continuously
monitored. Suppose an abnormality occurs in any of the
system components, affecting the system's normal
function. In that case, this problem will be informed to
the operator by an audio or visual alarm. All system
components are sensitive to faults that may disrupt the
normal function of the process or even cause damage and
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dangerous situations. The increasing complexity of
industrial processes, besides increasing demand for
safety and better quality and efficiency, makes us
diagnose the faults of the systems more accurately and
efficiently. There are other undesired inputs like noise
and different kinds of disturbances in the systems, and
their effects can be mistaken as the effects of the faults.
The monitoring system should be able to distinguish
between the faults and other unknown inputs like noise
and disturbances. To this end, many fault detection and
isolation approaches have been presented. Some of these
methods do not rely on the model of the plant [1]. These
methods use the system's inputs and measured outputs for
the fault diagnosis [2]. The other classes of fault
diagnosis methods are based on available models of the
plant and do fault detection, isolation, or estimation
depending on their approach [3].

In modern industrial control systems, communication
networks are used for the data and control commands to
the plant and information of the plant to the control room
due to many control and monitoring loops. So that these
networks have become an inseparable part of today’s
control and monitoring systems. Scheduling, delays, and
data packet losses are some of the challenges for network
control and monitoring systems. [4] proposes a fault
detection approach based on the minimum variance
benchmark for linear networked systems with time-
varying delays and missing data packets. A fault-tolerant


http://joc.kntu.ac.ir/article-1-1043-en.html

[ Downloaded from joc.kntu.ac.ir on 2026-01-29 ]

H. Alikhani et al.: Fault Detection and Isolation of Linear Roesser Systems with Stochastic Communications

method for compensating the actuator fault in the
distributed network control systems has been presented
in [5], while the time delays, quantization errors, and data
packet losses are considered. The problem of network
fault tolerant control of the nonlinear systems with
unknown time-varying sensor faults has been addressed
in [6].

Reducing the data transmission rate through the network
is one of the other important issues in networked control
and monitoring systems. In this regard, event-triggered
data transmission is one of the most popular approaches.
In the event-triggered framework, a new data packet is
sent through the network only if a particular condition is
satisfied, which reduces the required network bandwidth
[7].

Data transmission in a stochastic manner or based on
protocols like Round-Robin is the other approach that has
gotten attention in research papers on networked control
and monitoring systems [8-10]. All of these approaches
are based on the principle of reducing the data
transmissions as much as possible to reduce the
implementation costs.

Two-dimensional (2D) systems are another class of
dynamical systems with two independent variables
despite the one-dimensional systems that only have time
as their independent variable and ordinary differential
equations that can describe their model. The most famous
classes of 2D systems are Roesser and Fornasini-
Marchesini models (The Fornasini-Marchesini model is
divided into the first and second types) [11]. They have
various applications in different areas. Image processing
is one of their application fields in that the horizontal and
vertical indices of the image are presented by the two
independent variables of the 2D systems [12]. Iterative
and learning control systems are another field of
application for 2D systems. One independent variable
represents time, and the other represents the repetition
index in the control system [13]. Modeling the partial
differential equation (PDE) systems is another
application of the 2D systems in that one of the
independent variables represents time, and the other
represents the spatial index in the control system [14].
Regarding the mentioned applications of 2D systems in
the Iterative and learning control and PDE systems, there
are many papers on the control [15-17] and monitoring
[14, 18-20] of the 2D systems.

The communication networks have gotten attention on
the control and observer design of the 2D systems for a
reason similar to the conventional ODE systems. A
robust iterative controller for batch processes with time
delays and data packet losses has been presented in [21].
The controller design problem using an observer for the
Roesser systems with packet dropouts has been

investigated in [22]. In [23], has generalized the sliding
mode control of the Roesser system in the event-triggered
framework. The problem of the networked simultaneous
fault detection and isolation and robust control of the
Roesser systems with different kinds of disturbances has
been addressed in [24]. For the first time, the event-
triggered control of the Fornasini-Marchesini systems
has been investigated in [25]. Event-triggered control of
the Markov jump 2D systems has been proposed in [26].
In the event-triggered approach, some conditions must be
monitored for the decision about sending or not sending
the data packets all the time. The data transmission rates
reduce depending on how strict these conditions are. As
the data transmission rates reduce, less network
bandwidth is required. The main problem with the event-
triggered approach is always checking some specific
conditions to decide on sending or not sending the data
packets. Furthermore, the exact required network
bandwidth cannot be predicted. Another approach for
reducing the required bandwidth of the communication
network is to send just a portion of the data packets at
every sampling time without checking any conditions.
This data transmission can obey a specific protocol like
Round-Robin or can be in a stochastic manner. There are
some results on this kind of communication for the 2D
systems in [27-31]. A sliding mode controller for the
Roesser systems has been presented in [27]. In [28], a
robust output controller for the Fornasini-Marchesini
systems with stochastic communications has been
proposed. The filtering problem of the Fornasini-
Marchesini systems has been addressed in [30, 31] with
communication-based on the Round-Robin protocol.

In the mentioned papers on control and observer design
with stochastic and Round-Robin data transmissions,
Fornasini-Marchesini's second model systems are mainly
investigated. No paper exists on the Roesser systems'
fault diagnosis (fault detection and isolation) with
stochastic data transmission. Therefore, this paper aims
to design a robust observer for the linear Roesser systems
with a stochastic data transmission mechanism in the
presence of disturbances to detect and isolate faults in the
system. The system output is transmitted to the observer
through the network, and only one of the system outputs
will be sent randomly at each sampling time. A dedicated
residual for each fault is considered, and the bank of
residuals will be designed to have the most sensitivity to
their related faults and be robust concerning the
disturbances and other faults as much as possible. The
observer design method for each of the two fault
sensitivity and robustness with respect to the
disturbances are presented separately. Then, a unified
design method based on a linear constrained optimization
problem is proposed to achieve the two goals
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simultaneously.

The rest of the paper is organized as follows. The model
of the system, observer structure, and some mathematical
preliminaries will be presented in section Il. Section IlI
presents the stochastic data transmission mechanism,
some theorems about the observer design for robustness
with respect to the disturbances, and fault detection and
isolation. After that, a unified design approach is
proposed through a constrained linear optimization
problem. Section 1V provides some simulations to show
the effectiveness of the proposed fault detection and
isolation scheme. Finally, the conclusion is presented in
section V.

I1.PRELIMINARIES AND PROBLEM FORMULATION

Consider the following linear Roesser system:

[Xh(i+1,j)] _[An Alz] [xh(i,j)] +[g:] £G)

x,(,j+ 1) Az Azl lx, (i, j)
Bail /. .
-_I_ _[de] d(@.j)
[yl(ll])
¥y (i, J)
=[C; Glx(i,)) + Def(i,))
+ Dgd (i, )
where  x,(i,j) € R™, x,(i,j) E R™, y(i,j) =
G o »@@NHITeRP, d(i,j) €ER™ , and

f(i,j) € R are the state variables (including the
horizontal state variable vector x;, (i, j) and vertical state
variable vector x,(i,j)), the measured outputs, the
disturbances, and the fault inputs, respectively. The
matrices of the above Roesser system have the
appropriate dimensions regarding the mentioned signals.
The model of the mentioned Roesser system is
considered as below, hereafter:
where G is the shift operator and defined as Gx(i,j) =
[ G+ 1,7)  x,(,j + D], and x(i,)) =
P, ) xI(@, )HIT € R™ x,(0,)) and x, (i, 0) are the
boundary conditions of system (1). Furthermore, the
faults and disturbances are energy bounded.
The main aim of this paper is to design a robust observer
and a bank of residuals (a dedicated residual for each
fault) to detect and isolate the occurred faults in the
system (1) while being robust with respect to the
disturbances. To this end, consider the following
observer:

S2(i,)) = Aex(i,)) + Ly(i,))

r(i,)) = R(¥(i,)) — C2(, ))) @)
where r(i,)) € R, x(i,)) =[x}, )) I@ D" €
R™ (n=ny,+n,) are the residuals and the state

variables of the observer, respectively. Since X(i,j) €
R", then Ar € R™", LeR™P, and R € R"™P.
Furthermore, ¥(i, j) is the latest measured output that is
available. The goal is to detect the occurrence of the
faults and isolate them between a group of possible faults.
Therefore, a dedicated residual is assigned for each fault.
Assumption 1: The boundary conditions of the system
(1) satisfy the following inequality:

Jlim E{Z(leu(k OI? + 1l (0, K)I )} <o

where lx, (k, 0|12 = xT (k, 0)x, (k, 0) and
1,0, k)12 = x7 (0, k) x5, (0, k).

Lemma 1: Given V(i) =xT(, )Px(i,j) as the
Lyapunov function for the 2D system (1) with P =

0] the following equation holds:

kh ky
AV, ) = ) VG, k, +1) —V,(i,0)]
S3wer-3
+ Z Vh(kh + 1,])
(0, @)
Where:
Vh(l']) = x;(i!j)Phxh(i!j)
V, (i, J) = x5 (6, D P,x, (i, ) 4)

Proof: Regarding V(i,j) = x"(i,)Px(i,j) and P =
[ 0 P ] the Lyapunov function V (i, j) can be rewritten
as:
V(i) = xp (6, D P (@, ) + x5 (@ )P, (0 )
=Vy(@,)) +V, (0, ))
Therefore:
where:
AVL(L ) =V + 1, ) — V(L))

= x (i + L) Py (i + 1,))

- xff(i’]')Phxh(i'j) (6)
V0, j+1) =V, ))

= x,,(l j+ DP,x,(i,j+1)

— x, (0, NP, (0, ) ©)
Using (6), (8) can be obtained. In a similar way (9) is
derived using (7). Then, equation (3) can easily be
concluded by (5), (8), and (9).

AV, (L)) =

IHHI.MAIN RESULTS

The structure of the robust fault isolation observer is
shown in (2), where y(i, j) is used instead of y (i, j) in it.
Actually, only one of p measured outputs is sent through
the network due to bandwidth limitations of the
communication network. A zero-order hold is used for
other outputs to keep their previously available values.

Therefore, pp%l percent will be saved in the bandwidth of
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kn ky kn ky
Z Z AHE Z Z[Vh(i +1,)) — V(i )]
i=0 j=0 i=0 j=0

kn

=D WGk + 1) = V5, 0)]

= [V,(1,0) = V4(0,0)] + [V, (1,1) — V;,(0,D] + [V, (1,2) — V},(0,2)] + -

+ [V (1, k) — Vi (0, k)] + [V (2,0) = Vi, (2,0)] + [V, (2,1) =V, (1,1)] + -
+ [Vh(2, k) = Vi (1, k)] + -+ + [Vi (kp + 1,0) =V (kp, 0)] + -

ey

+ Walln + 1K) = Vil )] = ) WVl +1,)) = Va(0,)] ®
kn ky kn ky J=0
PG BN AGESVEAA)
i=0 j=0 i=0 j=0

= [11(0,1) = V,(0,00] + [V,(0,2) — ;,(0,1)] + -+ + [V, (0, k, + 1) — V;,(0, k)]
+[V,(L1D) - 1;(1,00] + [;,(1,2) = V,(L,D] + -+ [G(1 ky, + 1) = V(1 k)] + -
+ [Vv(khv 1) - Vv(khv 1)] +oet [Vv(kh: kv + 1) - Vv(khtkv)]

9)

the network. For example, in a system with two outputs
(p = 2), 50 percent for the bandwidth of the network will
be saved. This amount goes higher as the number of
outputs increases. Considering “i” as the spatial index
and “j” as the temporal index, the output y(i,j) is
modelled by:
¥ 7) = Bapy @) + (I = Bup)7(@j— 1) (10)

where:

§h() - 1) 0 0 0

- 0 Sh()—2) 0 0

Prp = 0 0 0
0 0 0 8h()-p)

h(j) indicates which of the p outputs are sent to the
observer through the network (1 < h(j) < p). Therefore,
Bnr(j) is a diagonal matrix with only one non-zero element
related to the selected output through p outputs for
sending to the observer. This output is selected randomly
in each sampling time, and its updated data will be sent
to the observer while the other outputs preserve their
previous values using a zero-order hold. The probability
of choosing each output is 6, for 1<k <p and
considered to be known. Therefore:

P(R() = K}
( 00 0 0 O
[0 " 0 0 o} (11)
=P1Bp=[0 0 1 0 0ft=0,
000 ~ 0
N lo 0 0 o ol

In each sampling period, one of the outputs is surely sent
to the observer through the network ({_, 6, = 1). Fig. 1
shows a schematic overview of the plant alongside
observer and stochastic data transmission.

A new augmented system with the new state variable
X)) =
en(@) 20 %G 20G67) y@j-DI
can be derived as:

SX(@i,)) = A(NXG,J) + B,(Nf )
+ Ba(NA(, )) 12)
r(i,)) = CU)X(i.j)j Ds(Nf (i, ))
+ Dy (A, j)
A 0 0
Ay =0 |LBrhC  Ar LU = Bup) |TIT
[ BrpC 0 (1= Bup)

where:

By By
Br(j) = 1| LBn(pDr |, B4 () = 1| LBr(jyDa
| Brn(p D BrpDa

C() = [RBrpC  —RC R(I = Buep)]00", D ()
= RBn(j» Dy, Ddo(i) =0R,8h(j)Dd

[Inh 0 0

| 0 0 I, O o|
m={0 I, 0 0 0

| 0 0 0 I o|

lo o o o 1)

The aim is for the designed observer (2) to be stable and
for the residual r(i,j) is sensitive to the faults while
being robust to disturbances. The augmented system (12)
contains the stochastic matrix fy;. Therefore, an
exclusive stability and a robustness concept will be
defined.
Definition 1: The 2D system (12) with zero input is
mean-square stable if, for any boundary conditions
satisfying Assumption 1, the following condition holds:

Jim E{lxG DI} =0
Definition 2: The 2D system (12) is robustly stable with
respect to the energy-bounded input d(i,j) in the H,,
sense with attenuation level y if the following inequality
holds while having zero boundary conditions:

E{lIrlI3} < v2lldll3
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where:

E(lIrl3) = £ Z PRUGED)!

i=0 j=0

Il = > > d"G NG
i=0 j=0
As mentioned earlier, we want to design a robustly stable
observer to successfully detect and isolate the faults of
the 2D system (1). To this end, the matrix coefficients
“L”and “R” should be determined such that:

1) The state vector X(i, j) is stable in the min-
square sense.

2) The following performance indices are satisfied
for the robustness of the residual r(i,j) with
respect to the disturbance d(i,j) while being
sensitive to the fault £ (i, j):

MEITIZ < vZlldll3, (D inf (F52) > 1,

AE{llr = Jf13} < vFIIf1I3
The performance index (1) is related to the robustness of
the residual (i, j) with respect to the disturbance d(i, j)
to reduce its effect by the attenuation level y,. H_
performance index for fault detection and isolation
consists of the performance indices (11) and (I11) to ensure
the fault sensitivity of the residuals and achieve fault
isolation simultaneously. “J” is a filter that can be
dynamic or static. The simplest choice to achieve fault
isolation is a diagonal matrix. Furthermore, the
performance index (Il) is related to the minimum
sensitivity of the residuals with respect to the faults. On
the other hand, the performance index (I11) forces the
residuals to track the filtered fault signal “Jf (i, )”. The
diagonal structure of the matrix “J” causes the first
residual is dedicated to the first fault, the second residual
is dedicated to the second fault, and so on.
The matrices Af and L have an impact on the stability of
the augmented system (12), and the robustness properties
of the observer (2) regarding the disturbance and the
faults for satisfying the performance indices (1) and (I11).
On the other hand, the matrix R can only manipulate the
robustness properties and help to satisfy the performance
indices (1) and (ll1). The matrices Ar and L have no
specific structure, but the matrix R should be full column
rank to reveal the effects of the fault inputs in the
residuals completely.
The observer design process for achieving stability while
satisfying the performance indices (1), (1), and (I11) are
developed separately and then merged to obtain a unified
approach.
A. Analysis and design regarding the disturbance input
In this section, the analysis and design process of the
observer (2) for robustness with respect to the
disturbance input is presented while maintaining
stability. The sufficient condition for the stability and

robustness analysis of the augmented system with respect
to the disturbance d(i,j) is stated in the following
theorem.

Theorem 1: Consider the 2D system (1) and the observer
(2) with the stochastic output data transmission (10).
Given the matrix coefficients L, A¢, R and the attenuation
level y4, the augmented system (12) is min-square stable
and the H,, performance index (1) is satisfied under zero
boundary conditions if there exist positive definite matrix
P € R@n+P)x2n4p) gych that the following matrix
inequality holds:

ATPA+CTC—P ATPB, + C"D, (13)
[ * BiPBq+ DiD,4 — yél]
<0
where:
A 0 0 B,
A=m|Lec A, LI -0)|n", B, =1|L0D,|,
ocC 0 U-0) 0Dy

=[ROC —RC R(I—0)]17,D, = ROD,,
Pa 0 0 0 0
0 P, O 0 O |

P =| 0O 0 P, 0 0
[ 0O 0 0 P, O J
0 0 0 0 P,
6, 0 0
@={0 ~ 0|=E{Byp}
0 0 6,

and P,; € R™*™, p,, € R" " P € R P, €
R™>*™ and P,; € RP*P.
Proof: first, the stability of the augmented system (12)
will be shown based on Definition 1. To thisend, Z,, and
Z, are introduced as:
z, = E{[eX (i, NI"P(SX (1, N)|X (1, D}
Z, = X" (i, )PX (i, )) (14)
Consider the index J = Z; — Z,. Substitution of the
augmented system (12) in J leads to:
J
= E{[6X (i, D]"PISX (i, NIIX (i, D}
- T -~
= E{[AG)x @ D] PADX D] [X N}
— X", ))PX (i, J)
= X"(@i, H[ATPA - P]X(i,)) (15)
= X", NAX(, J)
Regarding (13), it is obvious that Q < 0. Therefore, for
any X (i, j) it can be concluded:
Zi—Z, X", NEEDXAE))

Z,  XTGHPXG))
Amin(_ﬂ)
S-—————C=0-1 16
T (P) 16)
whereg =1 — [A”“"( ))] Inequality

(16) leads to:
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sS4 (17 ;
°=z , , Xa (1K)
e | El{xia xjok+nlp [ n0 0 )
Itis obvious that Z22-" > 0 regarding P > 0 and Q < Xv((Olk)+ )
0. As a result 0 <o <1 and independent of X(i,j). < oE {[XZ(O, k) X7(0,k)IP [Xh(olk)]}
Furthermore, Z; < oZ, can be concluded by (17). Taking E{XT(0,k + 1)P,X,, (0, k + 1)} v
expectation of both sides result in the following: ha hZhE{kT(O k4 1P (0 k + 1))
E{[eX (i, D]"PISX (i, NIIX (1)} ; ; P e O
< oXT(i, NPX (i, ]) (18) Summing both sides of these inequalities and two

equations will lead to (19). Then, by subsequent usage of
inequality (19), (20) will be obtained. Norm properties

result in the inequality (21), where ¢=j%xgg’. Let us

By substitution of i and j for 0 through k + 1 we have:
E{XT(k +1,0)P,X,(k + 1,0)}
= E{XI'(k + 1,0)B,X,(k + 1,0)}

introduce X, = ¥¥_,lIX(k —j, )I>. Then, by taking into
E {[Xg(k +1,0) XI(k,1)]P [X}B‘Ek(: %O) } account (21), we have:
X, (k, 0) E{Xo} < pE{l1X,(0,0)]I2 + [1X, (0,01}
< oF {[Xff (k,0) Xy (k,0)]P [ ’ } E{X;} < @[oE{IX, (0,017 + 1X,(0,0) 11}
X, (k,0) ! ,
. . X, (k, 1) + E{IX,(L,O)I” + [1X,(0,)I1}]
E{ixiten) xIGe-120P[, 0" Py |} E(X,} < ¢lo2E{lIX,(0,0)]12 + 1X,(0,0)11)
ok ;1(’2();( —1.1) + GE{IX, (LO)IZ + [1X,(0,1)]I2}
<op{IX[te-10 xGe-100P [0 T} + E(IX, 2O + 1X,(0,2)[14)]

plii-12) xe-23P[PE 0BG < gl ENLQOIF + 1X,00)1)
, . "X (k = 2,2) + oV LE{IIX, (LO)I + 11X, (0,111}
< aE{[Xh (k—22) XI(k—22)]P [X 2 } ‘o

+ E{IIX, (N, 0112 + lIX,.(0, M1}]

k+1 L
E {Z XEG+ 1= XEG+ 1= e [0 T 170D }
j=0 v ’
k
< oE {Z XT(k —j, DPX(k —j, k)} + E{XT(0, k + 1)P, X, (0, k + 1)}
=0
+ E{XT (k + 1,0)P, X, (k + 1,0)} (19)
k+1 P
E {Z XEG+ 1= XEG+ 1= e [0 T 170D }
j=0 v ’
< o*1E{XT(0,0)P,X,(0,0)} + E{XI(0,0)P,X,(0,0)}
k
T . , Xn(0,k+1-7)
+E{Z)01[Xh(0,k +1-)) XI(k+1—j,0)P [XZ(k i —1,0)]}
£
+ E{XT(0,k + 1)P,X,(0,k + 1)} + E{XT (k + 1,0)P, X, (k + 1,0)}
k+1
; Xp(0,k+1—j
=E {Z) [ XFO0,k+1—-)) XI'(k+1-j,0)]P [X:gk + I_j’ (13 (20)
=
k+1 k+1
E {anu« +1 _,-,,-)”z} <@ ) Kk + 1=, Ol + X0,k +1 = DI 21)
. Jj=0 Jj=0
D B < ¢+ 0+ -+ SMEIX, Q01 + (X, 0011
k=0
+ ¢+ 0+ -+ " HE(IX, (L0 + X, (0,117} + -
+ SELIX, (N, 0 + 1, (0, M)}
< @1+ + -+ ME(X OO + X, (0,0}
+ o1+ 0+ -+ aE(IX, (LI + X, (0, DI} + -
F 9L+ o 4+ aMEIX, NV, O + X0, M)
= o (222 e 01 + 1, 0,001 22)
B 1-0 o v A
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The summation of both sides results in (22).
—oN
The right-hand side of (22) consists of ¢ (1 ) and

1-o0

E{Zk=0(1X, (e, 0117 + 11X, (0, )1I?)}. The first term
__N
(¢ (11_00 )) is obviously bounded. The second term is the
same as in Assumption 1, which is taken as a bounded
value. This means that Y¥_, E{X} is bounded. If N —
oo, ¥N_o E{X;} still remains bounded (because the right-
hand side remains bounded). E{X} fork =0to k — o
is a series of non-negative terms with I\IIim YN _JE{X} <

co. The boundedness of this summation requires that
lim E{Xy} = 0. Therefore, _li,m E{IIX(@,DI*y=0
i+j—o0

N—-oo

and the augmented system (12) is min-square stable
regarding Definition 1.

We multiply the inequality (13) by [X7(i,)) dT(i, )]
and its transpose from left and right, respectively, to
show the robustness of the augmented system (12) with
respect to the disturbance d(i,j). Considering © as the
expected value of S, we have:

B @A)
where:

A= [Au AT(HPB4() + CT(ND4() ]
«  BL(DPBa() + DF(ND4() - vaI
Ay = AT(DPAG) +CT(HCG) — P
Which can be rewritten as:
E{AV (i, ) +r" (i, )Hr(, j)
—yqd" (i, Nd(, )} < 0 (23)

l<o

where:
AV (i, j) = AV, (i, ) + AV, (1))
= [V,(i + 1)) — Vi@, )]
A RSV ERA(N))

Furthermore:
.. . [P 0 .
G = XEGH[ B ) X
h2
P, 0 0
V(@) =X5(i,j)[ 0 P, 0|X3G0)0)
0 0 Py

Double summation of both sides of
(23) fori = 0 and j = 0 results in (expected value is a
linear operator):

E Z Z[AV(i,j) + 77 (0, D, )
i=0 j=0
_y2dT i pdG <o @A)

Under zero boundary conditions and taking into account
Lemma 1, it can Dbe concluded that
E{X%20 X520 AV (i, )} = 0. As a result:

D ATEHrG) = vE ). Y dT@NAG))
g <0 o

12

[oe]
=0

E{lr @ DIIZ} < v3Nld(, DII3

|
The stability and robustness analysis of the augmented
system (12) was investigated in Theorem 1. The
following theorem is about sufficient LMI conditions for
the design of the robust observer (2) with stochastic
output transmission.
Theorem 2: Consider the 2D system (1) and the observer
(2) with the stochastic output data transmission (10).
Given the attenuation level y,, the augmented system
(12) is min-square stable and the H,, performance index
(1) is satisfied under zero boundary conditions if there
exist matrices S € R™?, M € R™" and the positive
definite matrix Q € R@+P)*@n+p)  guch that the
following LMI holds:

-Q 0 ATQ CT

«+  —yil BiQ Di| .o (25)
* * —-Q 0
* * * -1
where:
Py 0O O 0 O
[0 Py, 0 O 0]
Q:HTPH=|0 0 P, O 0|
0 0 0 P, O
lo o o o0 Pl
P, 0 0
:IO P, 0
0 0 P
ATp,  CcTesT crer,
ATQg=| o MT 0 )

0 (-0)ST (I-0)P;
BIQ =[BIP, DIeST 0]
C =[ROC —RC R(I-0)]
The matrix D, is the same as Theorem 1. Furthermore,
the matrix coefficients L and Ay can be obtained by Ay =
P;yiM,and L = P;1S (R is apart of C and is obtained by
solving (25)).
Proof: Applying Schur lemma on (13) leads to:
[—P 0 AT CT

« —yil B} Di|_, (26)
* * P71 0
* * * —]

After multiplying (26) by diag (I, I, P, I) from the right
and left sides, we have:
[-p 0 A"P (T

« —y3l BIP DJ|_, 27)
* x =P 0
Y * * —1
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Then the LMI (25) will be obtained by multiplying the
inequality (27) by diag(1™, 1,17, I) and diag (11, 1,11, 1)
from the left and right sides, respectively. This shows the
sufficiency of LMI (25) for the matrix inequality (13).
Furthermore, the sufficiency of (13) for the stability and
robustness of the augmented system (12) with respect to
the disturbance d (i, j) is shown in Theorem 1. Therefore,
the sufficiency of the LMI (25) for the stability and
robustness of the augmented system (12) is proved.

|
B. Analysis and design for fault detection and isolation
This section presents the analysis and design process of
the observer (2) for fault detection and is presented while
maintaining stability. In the following theorem, the
sufficient conditions for the stability analysis of the
augmented system (12) and the simultaneous satisfaction
of H_ performance index (I1) for fault detection, and H,,
performance index (I11) for the fault isolation are
presented.
Theorem 3: Consider the 2D system (1) and the observer
(2) with the stochastic output data transmission (10).
Given the matrix coefficients / > 1, L, A, R and the
attenuation level y, the augmented system (12) is min-
square stable and the H,, performance index (I1) and H_
performance index (1) are satisfied under zero boundary
conditions if there exist positive definite matrix P €
R@+p)x(2n+p) gch that the following matrix inequality
holds:

ATPA+CTC—P  ATPB, +CTD;

] BTPB, +DID; —y21| (8
<0
where:
By
By =1T|LODs|,D; = ROD; — ]
0D

The matrices A, C, and P are defined similarly to
Theorem 1.
Proof: It is obvious that J > I satisfies the performance
index (11). The proof of satisfaction of performance index
(111) by inequality
(28) is similar to Theorem 1, which is omitted for the sake
of brevity.

|
The following theorem presents sufficient conditions for
the observer and residual design for fault detection and
isolation.
Theorem 4: Consider the 2D system (1) and the observer
(2) with the stochastic output data transmission (10).
Given the attenuation level y, the augmented system
(12) is min-square stable and the H_ performance index
(1) and the H, performance index (lll) are satisfied
under zero boundary conditions if there exist matrices
SeR™P, M € R™™ and the positive definite matrix
Q € R@n+P)x@n+p) gch that the following LMIs hold:

J—1>0 (29)
[-F@ 0 AT¢ (M

| « —y}1 BfQ Df| (30)

<0
T e
* * * -1
where:

BfQ =[BfP, DfesT 0]
The other matrices are defined similarly to Theorem 1.
Furthermore, the matrix coefficients L and Af can be
obtained by A = P, *M,and L = P;*S (R is apartof C
and is obtained by solving (25)).
Proof: About the satisfaction of the H_ performance
index (1) is discussed in Theorem 3. The performance
index (I11) is similar to the H,, performance index (I).
Therefore, the sufficiency of the LMI (30) for the matrix
inequality
(28) can be shown similarly. As a result, the mean-square
stability of the augmented system (12) and the ability of
the observer (2) for fault detection and isolation can be
proved, which is omitted for the sake of brevity.
|
In Theorem 4 and Theorem 2, the observer design with
stochastic communications (to decrease the required
bandwidth for the communication network) was
investigated for achieving fault detection isolation and
robustness with respect to the disturbances while being
augmented stable, separately. Both theorems should be
considered simultaneously to achieve satisfactory results.
In the performance index (l), the effects of the
disturbance on the residual decreases as the attenuation
level y, is reduced. Similarly, the fault isolation is done
better if the performance index (lIl) is satisfied with
smaller values of v, and the interferences of the faults
to their unrelated residuals are reduced (for example, the
first residual gets the biggest impact from the first fault
and so much smaller effects for the other faults).
Therefore, it is desired to reduce the attenuation levels y,4
and y; as much as possible. This reduction in the
attenuation levels is possible to a certain level and
depends on the system matrices. Therefore, the following
optimization problem is used to minimize both of the y,
and y; simultaneously:
LIE}I}Q a1 Ty + aylf e
5.t.(25),(29), and (30) hold
where a; and a, are the weighting coefficients.
Furthermore, Ty = y]? and T; =y5 to make the

optimization problem (31) linear. As the proportion Z—i

increases, the importance of the robustness with respect

to the disturbance d(i,j) is more intensified and vice

versa (As the proportion % increases, the importance of
2

fault isolation is intensified).
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IV.SIMULATIONS

In this section, the performance of the proposed robust
fault detection and isolation filter will be evaluated
through some simulations.

Example 1: Consider the following partial differential
equation describing a heat process:
aT(x,t)  dT(x,¢t) AT
- o (x,t) + ulx, t)
The derivative terms can be approximated by:
oT(x,t) T(@,j)—T3G0—-1,))

(32)

dx Ax
oT(x,t) T(@,j+1)—-T(xGJ)
o - At
Regarding the mentioned approximations, the Roesser
model of the system (32) with zero input will be:

0 1
SX(i,)) = [ﬁ LW R((9))
Ax Ax
TG - 1))

where X(i,j) = [
dx = 0.4:

.. . Assuming dt = 0.1,
T(,j)) ] g

_T70 1
o 4= lo2s 0as! _
The other matrices of the system are considered as:
_[0.1 _[05 0031 ~_[1 ©
Bd_[o]'Bf_[o.6 0.1]’C_[0.2 1
0.09

_ 71 o1
Dd_[o.z]'Df_[o.z 1]
The disturbance input is considered as d(i,j) =

Lsin (%) and the fault inputs are taken as:

30
[(1)] (2 <i<10)&&(3 < j < 10)
£, ) = [(1)] (15 < i < 25)&&(j = 15)

[8] otherwise

The weighting coefficients a; = a, = 1 are chosen. The
probability of sending each of the two outputs of the plant
through the network are considered as 8, = 6, = 0.5.
The robust observer (2) is designed using the constrained
optimization problem (31). The results of the fault
detection and isolation of the observer is depicted in Fig.
2. Furthermore, the token passing between the outputs of
the plant for the data transmission through the network is
presented in Fig. 3. It is shown in Fig. 2 that both of the
faults are detected and isolated in their related fault, and
the other fault effect is weakened. Furthermore, the effect
of the disturbance input is weakened successfully. The
plant has two outputs. Therefore, the access token to the
network should toggle between two values. In Fig. 3, the
blue (yellow) squares are related to the update points of
the first (second) output in different spatial and temporal
indices. The probability of passing tokens to each of the
outputs is equal to 0.5, verifiable by the almost equal
numbers of the yellow and blue squares in Fig. 3. The

robust performance bounds of the observer (2) for this
example are reported in Table 1.

Example 2: Consider the following partial differential
equation describing a gas absorption or water stream
heating process:

9%25(x, t) 0S(x,t) 9S(x,t)

axot T o P ox
+ a3S(x,t) + bu(x,t) (33)
The model of the system
(33) using W(x, t) = as;’:’t) — a,S(x, t) can be rewritten
as:
oW (x,t)
0x _[aa aia; + a3] W(x, t)] b
as(x,t) |~ 11 @ Jlseol™ HECD
at
TABLE 1
Robust performance bounds for example 1
Transition Probability Ya 173
6,=6,=05 0521 | 0.754

Fig. 2. The residuals for the fault detection and isolation

Token Passing(Yellow: granted, Blue: not granted)

i (spatial index)
=

@

Jj (temporal index)
Fig. 3. Token passing between the two outputs of the plant
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Similar to example 1, its Roesser model without input is

obtained as:
.. 1+ a,Ax (a,a, +a3)Ax ..
SXCD=|" "5 ( 14 a2§2 ]X(l'f)

Assuming dt = 0.1, dx = 0.4,a;, = —0.5,a, = a; =
-1:
A= [ —0 2

The other matrices of the system are considered as:

2[0.5 _005] B, - [005 0.7
c= [_
Da = g:gé —0.03]’ f=[0.08

The disturbance input is considered as d(i,j) =

L sin (22’”) and the fault inputs are taken as:

30
([O] (2 <i<10)&&(3<j < 10)

fG)) = J[ | ass<is<25)z8(215)

0
[O] otherwise

The weighting coefficients a¢; = @, = 1 are chosen.
The probability of sending each of the two outputs of the
plant through the network are considered as 8; = 0.3 and
6, = 0.7. The robust observer (2) is designed similarly
to example 1. The results of the fault detection and
isolation of the observer are depicted in Fig. 4.
Furthermore, the token passing between the outputs of
the plant for the data transmission through the network is
presented in Fig. 5. Similar to example 1, both of the
faults are detected and isolated in their related fault, and
the other fault effect is weakened. Furthermore, the effect
of the disturbance input is weakened successfully. The
plant has two outputs, and the probability of passing the
token to each output equals 0.3 and 0.7, respectively.
This effect is verifiable in Fig. 5. The robust performance
bounds of the observer (2) for this example are reported
in Table 2.

1]

0.8 0. 4-]
0.03]

10 . 20

Fig. 4. The residuals for the fault detection and isolation

10

Token Passing(Yellow: granted, Blue: not granted)

i (spatial index)
5

Jj (temporal index)
Fig. 5. Token passing between the two outputs of the plant

TABLE 2
Robust performance bounds for example 2

Transition Probability Ya Yr

6,=0.3,6,=0.7 0.935 | 0.627

V.CONCLUSION

This paper proposes a robust observer for the fault
detection and isolation of the linear Roesser with
stochastic  output  transmission  through  the
communication network. At each sampling time, only
one of the plant's outputs is selected randomly to be sent
through the network and updated on the observer side,
while the other outputs keep their previous values. This
leads to the reduction of the required data packet
transmissions through the network. The problem of fault
detection and isolation is modeled as a H_/H,
optimization problem. Furthermore, the robustness of the
bank of the residuals with respect to the disturbances is
modeled as a H,, optimization problem. The sufficient
conditions for satisfying the mentioned optimization
problems are separately stated as LMIs. An observer
design approach for simultaneously fulfilling all
objectives (observer stability, fault detection and
isolation, and robustness concerning the disturbances) is
presented as a constrained linear optimization problem.
Finally, the performance of the proposed observer is
evaluated through some simulations. The developed
robust fault detection and isolation observer is uses a
linear Roesser model without delay, and the
communication links are assumed to be perfect. The
incorporation of delay terms and data packet losses are
considered for future studies.
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