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Abstract-The application of Abstract Meaning 

Representation (AMR) is widely increasing as a principal 

form of structured sentence semantics, and it is considered as 

a turning point for Natural Language Processing (NLP) 

research. AMRs are rooted and labeled graphs, which 

capture semantics on sentence level and abstract away from 

Morpho-Syntactic properties. The nodes of the graph 

represent meaning concepts, and the edge labels show 

relationships between them. In this paper, we give a brief 

review about the existing approaches of generating text from 

AMR and parsing input text to produce AMR by studying 

various research from 2013 to 2022. Besides, we explain how 

the researchers have been used AMR for prevalent NLP 

tasks. Afterwards, we describe the existing datasets and 

evaluation metrics, which can be used in this regard. Finally, 

we discuss some basic features and challenges of AMR. 
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I.   INTRODUCTION 

very human can answer the below question easily, in a 

given context, but it is very complicated for machines 

to analyze this question in natural language: 

Who did what to whom? 

Determining the true meaning of human natural 

language by machine has always been one of the main 

goals of Natural Language Processing researchers. Using 

Machine Learning (ML) methods for training the data, 

which are the common approach in this field, the 

challenge has changed to have a meaningful 

representation that is computationally friendly and can be 

used to annotate a large amount of data in multiple 

natural languages, consistently.  

It is about two decades or more, that NLP analysis 

relied completely on syntactic Treebanks Corpora to 

make machines to get the meaning of human natural 

languages. When Penn Treebank project [1] released the 

first large-scale Treebank, even more syntactic 

Treebanks have been proposed for a wide range of 

languages. Then, they have been used to build principal 

NLP systems, such as Part-Of-Speech (POS) taggers, 

Question Answering (QA), Machine Translation (MT) 

and Text Summarization (TS) systems [2-4]. 

By passing from the syntactic structure analysis to 

semantics, scientists found that statistical parsers are not 

well suited for meaning representation production. In 

semantic analysis, complicated structures, which are very 

difficult to capture by parse tree structures and their 

limitations have often been encountered. For instance, in 

semantic network structure, nodes are often equivalent to 

the argument of more than one predicate. So, it can be 

useful for finding semantically less important words, 

hence, leaving nodes that do not add any further meaning 

to the final result, unattached. To solve the problems 

posed by this limitation and do a direct semantic analysis 

of all sentences, recent research have shifted to parsing 

with graph-structured representations. Because, syntactic 

Treebanks had been vital for enhancing the performance 

of syntactic parsers, emerge techniques with semantic 

parsing using Sembanks, which are sets of English 

sentences paired with their related semantic 

representations [5]. 
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For example, the semantic structure of the sentence 

The dog treed the cat is considerably complicated, and 

translating it to other natural languages may not be easy. 

Because the verb treed is an example of skewing between 

semantics and grammar. Tree is applied as a verb in this 

sentence and the event has happened caused to go up. In 

other words, the sentence means the dog chased the cat, 

thus, the cat went up into a tree or the dog caused the cat 

to go up into a tree [6]. 

Usually, semantic parsing involves domain 

dependence. Some application domains are: The Air 

Travel Information Service (ATIS), the Robocup Coach 

Language (Clang), and Database Query Application 

(GeoQuery). Although, we need definitely large semantic 

banks for broad coverage in NLP, various related projects 

have been launched like the Groningen Meaning Bank 

(GMB) [7], the Semantic Treebank (ST) [8], UCCA [9], 

the Prague Dependency Bank [10] and UNL [11]. 

Afterwards, Banarescu et al. [12] tried to annotate the 

logical meaning of sentences in Abstract Meaning 

Representation (AMR), which constituted semantic 

roles, questions, co-reference, modality, negation, and 

linguistic phenomena. Therefore, by producing a notable 

corpus and a correctable logical semantic input format, 

the AMR creators hope to be able to encourage important 

advances in Statistical Machine Translation (SMT), 

Natural Language Generation (NLG), and Statistical 

Natural Language Understanding (SNLU). 

The existence of AMR parsers and their quality 

performance has encouraged many researchers to work 

on integrating the whole sentence meaning into NLP 

applications. In this regard, Tohidi and Dadkhah [13] 

provided a short review of AMR applications in 

downstream tasks. To the best of our knowledge, the 

distribution of the different applications of AMR in 

various NLP tasks is as follows: 31% for Machine 

Comprehension, 18% for each Text Summarization and 

Question Answering, 13% for Entity Linking and Linked 

Data, 9% for each Machine Translation and Information 

Retrieval and 2% for other NLP tasks. 

In this paper, we investigated AMR model and 

reviewed the existing methods for parsing natural 

language to AMR and generating it from AMR. In this 

paper we categorized Parsing methods into five 

categories: 1) Grammar-based, 2) Graph-based, 3) 

Transition-based, 4) Sequence-to-sequence-based and 5) 

Conversion-based and Generating methods into six 

categories: 1) Tree-transducer-based, 2) Graph-

grammar-based, 3) Graph-based, 4) Sequence-to-

sequence-based, 5) Rule-based and 6) Transition-based. 

Besides we discussed evaluation metrics and the datasets 

used in related works and the main applications of AMR. 

In addition, we explained some common challenges of 

working with AMR structure. 

We noticed that the distribution of the different 

languages that have been used in previous AMR related 

works is as follows: 82% for English, 7% for Chinese, 

2% for each Japanese and Czech languages, 1% for each 

Persian, German, Spanish, Portuguese, French, Korean, 

etc. based on the research. As expected, most of the 

research have been done on English language, and more 

effort needed for other languages. One of the reasons for 

less research in non-English languages could be its 

structure. AMR designed specifically for English, and it 

may not be easy to use the whole format in some 

languages. 

The rest of this paper structured as follows: Section 2 

investigates AMR briefly. Section 3 gives an overview of 

AMR parsing and its related works. Section 4 studies 

generation text from AMR and its related works. Section 

5 discusses common evaluation methods in this area, 

some of the AMR challenges, and the basic features 

about AMRs. Finally, Section 6 provides the conclusion. 

 

II.   ABSTRACT MEANING REPRESENTATION 

In this section the basic and the improved form of 

AMR are explained respectively. 

A. Basic AMR  

There are two types of meaning representations: 

symbolic representations and distributed representations. 

AMR is an example of the first one and represents the 

semantic of an English utterance as a set of relations 

between predicates and entities, which packaged in a 

graph-based structure. In the graph, nodes are equivalent 

to variables that represent individuals, entities and 

predicates of the utterance. AMR uses a neo-Davidsonian 

view of predicate meanings and treats predicates as 

atomic individuals. 

First, it would be helpful to look at some examples of 

AMR to get more familiar with its structure. Fig. 1 

represents AMRs in the form of trees for the following 

two sentences: 

1) The children moaned. 

2) Ribble handed out envelopes to the children. 

 

Figure 1. The AMRs for the two mentioned sentences [14]. 

Every AMR has a root that is unique and is displayed 

as the first node within the related tree. Here, we can see 

variables: e, x, etc., concepts such as moan-01 and child, 

constants like Ribble, and roles such as ARG0, etc. Also 

the slash here indicates an instance, for example: x/child 

means that x is an instance of the concept child. 

Furthermore, the colon symbol is a punctuation symbol 

to represent roles, and parentheses show which role is 

(e / moan-01 

:ARG0 (x / child)) 

(e / give-01 

:ARG0 (x / person: named “Ribble”) 

:ARG1 (y / envelope) 

:ARG2 (z / child)) 
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related to which concept. In the structure, line breaks are 

optional. Additionally, AMRs can have a linear format. 

As an example, considering the sentence A boy read a 

booklet, the linear format is as follows:  

(e/read-01: ARG0 (x/boy): ARG1 (y/booklet)) 

A notable feature of AMRs is the role inversion 

ability. This feature swaps the arguments of a selected 

relation, for example: R (𝑥1, 𝑥2) ≡ R-of (𝑥2, 𝑥1). By role 

inversion (R-of), AMRs with the same meaning will be 

created, however their structure is not equivalent. As Fig. 

2 indicates, the role inversion can be applied for the 

above example, as its AMR has two arguments and role 

inversion can be applied on any of them. 

 

Figure 2. Role inversion feature of AMR. 

The left AMR in Fig. 2 places the focus on the word 

boy. In the right AMR, the focus is on the booklet, which 

paraphrases the sentence as a booklet that was read by a 

boy. This remarkable feature also has its limitations: it is 

not possible to focus on both boy and booklet, since it will 

be an AMR graph with two roots. 

AMRs commonly considered as tree structures; 

however, they can be seen as directed acyclic graphs with 

a single root too, that vertices are variables and edges 

denote roles and instances. As a result, AMRs can be 

converted into sets of triples [15]. The tree structure is 

more useful for semantic interpretation since we must be 

able to determine the scope for operators like negation. 

It is very simple to provide a semantic and theoretical 

interpretation. AMR can be made just by converting roles 

into two-place predicates, concepts, and events into one-

place predicates, and by quantifying the existence of all 

variables introduced by events and concepts. 

Furthermore, it is noteworthy that this kind of 

representation does not allow us to include scope-based 

operators systematically, such as quantification, 

negation, and projection. 

Moreover, a formal definition of AMRs syntax can be 

provided and a recursive translation function from AMR 

to FOL (First Order Logic) can be produced. The 

function, that has many similarities with the conversion 

from AMR to λ-calculus. The following notational 

definitions (simple AMRs syntax and semantics) are used 

in this regard [14, 16].  

Definition 1 states that constants and instance 

assignments that decorated with outgoing roles are all 

AMRs. It may be a bit counterintuitive; since different 

types of semantic objects place in one equation. 

Definition 1: 𝐴 ∷= 𝑐 | (𝑥 𝑃⁄ )| 𝑥 𝑃: 𝑅1𝐴1 …: 𝑅𝑛𝐴𝑛⁄  

                                                           
1 Discourse Representation Theory 

Where 𝐴𝑖 represents ith AMR, x and c represent 

variables and constants, respectively. Also, Ri and P are 

equivalent to ith roles and properties, respectively. 

The following translation function, Definition 2, 

would clarify the issue as it can translate all AMR 

structures into a kind of proposition. The most suitable 

method to understand is by interpreting an AMR c and 

AMR (x/P) as: there exists an entity denoted by the 

constant c and an x with property P, respectively.  

Definition 2: ∥ 𝑐. 𝜙 ∥= 𝜙(𝑐) 

∥ (𝑥 𝑃⁄ ). 𝜙 ∥= ∃𝑥(𝑃(𝑥) ∧  𝜙(𝑥)) 

∥ (𝑥 𝑃: 𝑅1𝐴1 …: 𝑅𝑛𝐴𝑛⁄ ). 𝜙 ∥
= ∃𝑥(𝑃(𝑥) ∧ 
∥ 𝐴1. 𝜆𝑦 ∙ 𝑅1(𝑥. 𝑦)
∥ ∧ 𝜙(𝑥)) 

A λ-expression 𝜙 is a function, or subroutine without 

a name, which could be applied to FOL terms as 

arguments in order to yield new FOL expressions where 

the variables are bounded to the argument terms [17]. To 

cope with the right scope assignment, the roles 

translation delayed by transforming them into λ-

expressions abstracting over role players. For example, 

the expression λy. R(x,y) is gotten, if the pre-translated x 

is linked to the not-translated AMR A (in Definition 1) 

via a role R. It results in a recursive function of 

translation, which maps a AMR paired with a λ-

expression (for roles) to a FOL formula.  

In translating process, when the target concept is 

related to the other ones, it is not clear that what semantic 

material they would introduce, and the roles should be 

attached to which edges. To deal with this, with the help 

of λ-bound formulas (that represent roles), the translation 

function postpones the decision. However, for starting 

the translation of a new AMR, we should start with the 

first node, which is the root. This node does not link to 

other concepts through outgoing roles, so it is necessary 

to give it a dummy tautology formula: λx.  

Fig. 3 represents a sample derivation for the sentence 

the teacher shouted. 

 

Figure 3. A sample derivation for an example sentence [14]. 

The produced structure is a closed formula, which 

means that all its variables are bounded because the 

translation certifies that no free occurrences of variables 

can be revealed. In addition, simple AMRs that are very 

similar to the controlled DRT1 fragment are presented, 

interestingly [18]. Simple AMRs are in the two-variable 

fragment of FOL. It should be noted that FOL is not 

decidable. In contrast, the two-variable fragment is a 

decidable FOL, in which formulas have a maximum of 

(x / boy 

:ARG0-of (e / read-01 

:ARG1 (y / booklet))) 

(y / booklet 

:ARG1-of (e / read-01 

:ARG0 (x / boy))) 
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two variables with different names; however, it does not 

have function symbols, yet probably have equality. In 

addition, it has the property of a finite model, that is, if a 

fragment formula can be satisfied, it can also be satisfied 

in a finite model. 

Fig. 4 illustrates an example of AMR annotation of 

the sentence the police want to arrest Micheal Karras 

from real data. Usually, nodes recognized with their 

variable. For instance, w labeled with the concept want-

01. Moreover, the labeled edges connecting nodes are 

relations, such as ARG0. Moreover, nodes that do not 

have variables are constants, such as Michael. They 

usually used to represent name, negation, or number. 

The mentioned figure shown that usually AMR 

concepts can be related with a single word in the sentence 

that constitutes a one-to-one mapping. However, 

sometimes there are concepts, which cannot easily be 

associated with any specific word in the sentence. These 

concepts usually indicate inferred knowledge, which 

invoked by certain phrases or implicit relationships 

between disparate clauses. This type of concepts called 

Abstract Concepts. For instance, the concept person in 

Fig. 4 is an inferred named entity type for Michael 

Karras.  

Banarescu et al. in [12] claimed that AMR cannot be 

considered as an Interlingua, the characteristic that it 

abstracts away from surface Morpho-syntactic 

differences, makes it very attractive to implement cross-

lingual AMR banks based on resembling principles.  

 

Figure 4. AMR graph and the related PENMAN notation [19]. 

Furthermore, Li et al. [20] shown that it is completely 

possible to align English-Chinese AMRs. According to 

this study of 100 English-Chinese sentences, which have 

been annotated manually with AMR pairs, the authors 

displayed that AMR formalism can be feasibly applied 

for other languages than English. 

Recently, Wein and Schneider in [21] proposed an 

annotation layout for structural divergences classification 

in cross-lingual meaning representations. They also 

produced 50 related Spanish- English annotated 

examples. They presented that structural divergence in 

cross-lingual meaning representations pairs can 

considered as a meaningful proxy of divergences 

between parallel texts. Hence, tools that depend on highly 

literal translations, like pre-trained MT systems, can 

efficiently exploit this structural divergence annotation 

layout to cross-lingual AMR of the data. To be more 

precise, they introduced a categorization to specify both 

the type and the reason of the divergence as being due to 

semantic, annotation or syntactic divergence.  

B. Improved AMR  

Some recent research tried to improve the basic 

version of AMR and concentrated on AMR’s challenges 

and shortcomings. In this regard, Pustejovsky et al. [22] 

introduced an extension to AMRs that tackled the 

semantic weaknesses of AMR while keeping its 

cognitive plainness. In particular, they handled 

quantification, negation, and modality phenomena that 

had not been among AMR specifications previously. 

Their proposed representation maintained the predicative 

nature of AMR and embedded it under a scope graph 

when it is needed. Plus, their proposed representation was 

different from other treatments of modal and 

quantification scope phenomena because it was more 

transparent and defined default scope whenever feasible. 

Fig. 5 illustrates the representation for a sentence 

according to their proposed model and shows their 

representation was suitable and efficient, because a 

rooted graph structure could be kept with the scope 

relation as the root node. 

 

Figure 5. Representation for the sentence A computer is on every desk 
[22]. 

O’Gorman et al. [23] added a layer of annotation on 

top of the AMR-2017 graph-bank (LDC2017T10) and 

produced a corpus called Multi-Sentence AMR (MS-

AMR). The added layer represented co-reference and 

implicit arguments beyond the sentence level. Fig. 6 

illustrates an example in which each <identchain> 

element assembles mentions of the same entity. Unlike 

other co-reference annotation layouts, these mentions are 

nodes in the AMR graphs (not pieces of text). Besides, 

the annotation distinguishes what implicit roles of 

predicate nodes the entity fills. 

 

Figure 6. Co-reference chain example in MS-AMR corpus [24]. 
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Anikina et al. [24] assessed the performance of 

various co-reference resolution implements on the MS-

AMR annotations. They worked on the token level by 

mapping the co-reference annotations from the nodes to 

the sentences and on the node level by mapping the 

implements’ co-reference predictions to the nodes of the 

graph. Consequently, they recognized that AllenNLP 

with SpanBERT embedding, in general, attained the best 

results. Afterwards, they presented how the output of a 

co-reference model can be integrated into the predictions 

of an AMR parser. They exploited the neural semantic 

parser that produced a graph for the input sentence 

compositionally, with the aim of mapping co-referent 

input tokens to the predicted graph’s nodes. The co-

reference chains, which are annotated in the MS-AMR 

corpus are really heterogeneous. At the token level, 

mentions of the same chain can be represented as nouns, 

pronouns or verbs. Fig. 7 presents an example in which 

the chain consists of various concepts at the node level: 

it, thing, harm-01, cut-01. These kinds of chains are not 

easy to predict for the AllenNLP co-reference model 

since they have different POSs and are semantically 

nontrivial (cut/harm). In the test set of this corpus, 35% 

of all co-reference chains contained entities, which were 

expressed with multiple different POS. 

 

Figure 7. Heterogeneous co-reference chain example from MS-AMR 

[24]. 

Although, AMR parsing approach already manages 

some cases of co-reference in the AMR graphs, some 

AMR nodes can create co-reference chains without 

having any token alignments. For instance, the AMR 

graph of the sentence Speak to a consultant has a separate 

node you as ARG0 of speak-01. However, this node does 

not correspond to any token in the sentence. In the test set 

of this corpus, 9% of all co-referent mentions do not have 

any alignments and the token-based co-reference 

resolvers could not tackle them. 

Another point which was proved in [24] was that 

incomplete or incorrect node-token alignments could 

have negative effect on the performance. This happens 

when the gold annotation contains generic concepts, 

which are represented in the AMR graphs but not 

detected at the token level. In the test set of this corpus, 

10% of all co-referent nodes referred to generic concepts 

such as country, person, or thing. It becomes an issue 

when AllenNLP finds the co-reference with more 

particular nodes like dad or China. In brief, tokens like 

dad is aligned to the related node like dad in the AMR 

graph whilst the more generic nodes like person do not 

have an alignment. Although, the gold co-reference chain 

contained only person as a member that results in the 

incorrect classification of dad as false positive however 

both nodes correspond to the same entity actually.  

Additionally, the authors recognized cases of wrongly 

resolved personal pronouns as some texts were borrowed 

from forums and the spokesman could switch during the 

conversation. Therefore, different people could 

understand different meanings. For instance, in the 

sentence Or should 𝐼1 ... just keep an eye on the anxiety 

until it becomes a problem? Well 𝐼2 wouldn’t try to keep 

an eye on anxiety for a start because that will make 𝑢1 

tense from MS-AMR test set, the first sentence has the 

pronoun I1 which refers to the same entity as u1 in the 

second sentence. The I2 pronoun in the second sentence 

corresponds to a different speaker. As the input text for 

the co-reference tool did not have any Meta information 

about the speakers, the tool resolved both occurrences of 

I as referring to the same entity. In the test set of this 

corpus, this problem influenced 9% of the co-reference 

chains. 

In another research, Fu et al. [25] designed an end-to-

end AMR co-reference resolution framework with the 

aim of creating multi-sentence AMRs. Their proposed 

model diminished error propagation in comparison with 

the previous rule-based and pipeline methods. Besides, 

for both in- and out-domain situations, it was more 

robust. Considering two sentences; Bill left for Paris and 

He arrived at noon, Fig. 8 illustrates the schema of their 

proposed framework that included a graph encoder, a 

concept identifier, and an antecedent prediction module. 

 

Figure 8. The end-to-end AMR co-reference resolution framework 

proposed in [25]. 

As seen in Fig. 8, they exploited a graph neural 

network to represent input AMRs for inducing expressive 

characteristics. They built connections between sentence-

level AMRs by linking their roots, with the aim of 

enabling cross-sentence information exchange. More, 

they defined a concept identification module to detect 

functional graph (non-concept) nodes like person, entity 

nodes such as Bill, verbal nodes with implicit role like 

arrive-01 and other regular nodes such as leave-11 to 
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upgrade the performance level. The final prior prediction 

is taken from the chosen nodes and all their conceivable 

prior candidates. 

AMR does not have a systematic treatment of 

projection phenomena, thus, its translation to logical 

form is not easy. Lai et al. [26] designed a translation 

function from AMR to FOL by applying continuation 

semantics that enabled to detect the semantic context of 

a statement in the form of an argument. It was a natural 

extension of AMR’s principal structure, which aimed to 

model basic projection phenomena, like negation and 

quantification, as well as complicated phenomena, like 

donkey anaphora and bound variables. In their definition, 

a continuation of an expression encodes surrounding 

contextual information related to its interpretation. In 

particular, the continuation assumption supposed that 

some natural language statements define methods, which 

consider their own semantic context as an argument. 

According to their work, continuations had remarkable 

results for the representations related to the predicative 

core in the structure of an AMR graph. A case in point is 

that it enabled the graph to be rooted at the predicate level 

as well as considering the continuation as a correlated 

argument to the relation related to that predicate. 

Therefore, their approach enabled to use standard AMRs 

without attaching properties or changing the graphs, plus 

allowed to extract valid inferences. 

In general, continuations could be considered as a 

pragmatic solution to AMR to FOL translation issue. 

Considering an expression’s continuation as an 

associated argument to the relation associated with that 

predicate, the AMR’s focus was maintained on the 

predicative core, however, still enabled valid inferences 

from projection phenomena to fall out. The model 

proposed in [26] did not have under-specification 

problem, so it allowed both to prioritize the most feasible 

interpretation of a scope ambiguity and to detect fewer 

common interpretations where necessary. Additionally, 

this model did not alter standard AMR edges, nodes, or 

leaves, enabling to exploit existing AMR corpora. 

Mapping fundamental projection phenomena to AMR 

could smooth the path for more comprehensive meaning 

representation, enabling plain translation of complicated 

phenomena, like negative raising that prove speaker 

intent and belief. Another remarkable superiority of the 

continuation-passing model for utterance or sentence 

level expressions was the modest way it could be 

extended to AMR models that have been used in human-

robot interaction dialogues. In other words, their 

introduced model could adopt the dynamic semantics of 

discourse moves as continuations. In addition, in 

continuation semantics, the order of application specified 

the relative scope of a predicate and each of its 

arguments. Unlike previous research, in [26] the 

outgoing roles of a predicate which should be ordered 

were taken, and the order of application to be the order 

the arguments were written in the AMR. 

Bonn et al. [27] proposed an expansion to the AMR 

annotation layout, which detected fine-grained 

pragmatically and semantically inferred spatial 

information in grounded corpora. They introduced a 

lexical group conceptualization and set of spatial 

annotation tools created in the context of a multimodal 

corpus including 185 3D structure-building dialogues 

between a human architect and builder in Minecraft. 

Minecraft presented a specifically advantageous spatial 

relation-elicitation environment as it automatically 

tracked orientations and locations of objects and avatars 

in the space based on an absolute Cartesian coordinate 

system. Via a two-step document and sentence level 

annotation process proposed to detect implicit 

information, they exerted these bearings and coordinates 

in the AMRs together with spatial framework annotation 

to build the spatial language in the ground of dialogues 

to absolute space. This supplement took the fine-grained 

spatial semantics and object grounding approaches of 

previous layouts and apply them into MS-AMR. The 

outcome was an annotation tool that could manage fine-

grained implicit and explicit nested spatial relations, 

which were structured in quantified space and combined 

fluidly with event dynamics. In addition, as the spatial 

annotations were merged into the domain-general AMR 

graphs, their proposed method determined information 

about the way spatial relations were displayed in the 

context of whole sentences and overall discourse. In 

brief, they proposed span single- and multi-sentence 

annotation. At single-sentence one, a general semantic 

roles and frames set beside relation-specific role-sets 

were introduced. Both the role-sets and conceptualization 

targeted lexical units from various POSs (and then 

adverbs and prepositions) and took considered intrinsic 

properties and extrinsic relations related to orientation, 

location, configuration, direction, extent, topology, and 

particularly Frame of Reference (FoR). At the multi-

sentence one, they introduced layers of co-reference 

annotation and bridging which detected implicit spatial 

knowledge and assisted in grounding. A significant 

addition to MS-AMR was incorporating an existential 

dummy AMR graph, which placed the configurational 

stage for the spatial entities represented in the dialogue. 

This dummy AMR graph introduced especial spatial 

frameworks for each entity and the environment and 

explained the way these frameworks mapped together. 

Although Spatial AMR targeted to be adaptable to other 

environments, they implemented it in the particular 

context of their corpus of Minecraft structure-building 

dialogues as an example of its range and characteristic. 

This annotated corpus was applied to train a semantic 

parser, for which they reported primary baseline 

outcomes. 
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As mentioned before, AMR does not represent scope 

information, which leads to an issue for its total 

expressivity and particularly for drawing inferences from 

negated expressions. This phenomenon is called 

«positive interpretations» of negated expressions, where 

implicit positive meaning is detected using the opposite 

of the negation’s focus inference. Stein and Donatelli 

[28] studied methods for representing Potential Positive 

Interpretations (PPIs) in AMR. They defined a logically 

motivated AMR structure for PPIs, which built the focus 

of negation explicit and planned an initial proposal for a 

systematic approach to produce this more expressive 

structure. In this regard, they attempted to detect if these 

structures can be systematically generated from the 

negated sentences AMR. Thus, they introduced a 

logically motivated AMR structure which made both 

negation focus and scope explicit. Further, they modeled 

an initial plan for transforming common AMRs to this 

more expressive model. Their primary evaluations about 

scope explicit supported previously made experiments 

that AMR missed expressive capacity. According to their 

observation, this weakness was particularly problematic 

for PPIs whose bound meaning results from an 

interaction of the information and negation structure. In 

brief, their proposed method allowed expressing the 

negations foci in AMR without altering the principal 

AMR.  

As AMR cannot represent non-veridical intentional 

contexts completely, Williamson et al. [29] addressed the 

problem of non-veridicality without resorting to layered 

graphs via a mapping from AMRs into Simply-Typed 

Lambda Calculus (STLC). This solution, in some cases, 

needed a new role, called :content, to be introduced that 

worked as an intentional operator. Besides, in de re or de 

dicto ambiguities they tackled the quantifier scope 

interaction and intentional operators. With this aim, they 

added a scope node and designed an explicit multi-

dimensional meaning using Cooper storage that resulted 

in deriving the de re and de dicto scope readings and 

intermediate scope readings. It is noteworthy that the 

:content role and its intentional translation can facilitate 

downstream NLP tasks. Particularly, different state 

predicates trigger different lexical inferences due to their 

semantic nature and state considering whether they are 

non-veridical like believe-01, factive like know-01 or 

counter-factive such as pretend-01.  

It has been mentioned that AMR has potential 

usefulness in NLP tasks like MT and NLG. Although, it 

suffers from lacking some aspects, like eliminating 

implicit time information that carries meaning. To cover 

this weakness, Donatelli et. al. [30] attempted to add 

aspect and tense tags to AMR, which leads to enhance its 

ability in meaning representation. Bakal [31] designed a 

rules-based approach to attach the roles from Donatelli et 

al. to standard AMR trees, applying semantic information 

encoded in the dependency tree representation on the 

same sentence. In brief, Bakal’s study had presented the 

necessity of a couple of modifications related to the time 

rules in the standard AMR. In these works, all the 

represented sentences had at least one type of aspect and 

tense noted implicitly, and in most cases, eliminating the 

aspect and tense would result in a notable difference in 

meaning. As they mentioned, on condition that AMR 

wants to be applied as a pragmatic meaning 

representation model, it requires including this 

information. In this regard, the proposed method could be 

exploited to fortify it. Besides, it can be considered that 

the Bakal’s classifier was fairly accurate at encoding and 

detecting the needed information. 

III.   AMR PARSING 

The process of mapping sentences in natural language 

to their semantic representations is Meaning 

Representation or Semantic Parsing. Therefore, the AMR 

parsing task is mapping natural language strings to AMR 

semantic graphs. In recent releases of the AMR bank, a 

great sympathy in this task has drowned and a 

considerable number of efforts has been done on it as 

follows:  

Szubert et al. [32] mentioned and discussed various 

linguistic phenomena responsible for reentrancies in 

AMR, like Co-reference, Coordination, Control, Adjunct 

control, Ellipsis, Relative clause, Nominal Control and 

Verbalization, then grouped reentrancy triggers in three 

types: syntactic, pragmatic, and AMR-specific. 

Additionally, they divided error types that AMR parsers 

usually make with respect to it in different categories. 

Table 1 depicts percentage of reentrancies in the 

LDC2015E86 training set according to their paper. 

TABLE I 
PERCENTAGE OF REENTRANCIES IN LDC2015E86 TRAINING SET. 

Phenomenon Frequency (%) 

Co-reference 37 

Adjunct control 16 

Control verbs 4 

Coordination 17 

Verbalization 14 

Pragmatic overreach 3 

Ellipsis 2 

Control-like structure 2 

Annotation mistakes 5 

Total 100 

Accordingly, they ran oracle experiments to probe the 

effects of the error types on both overall parsing score 

and reentrancy prediction (Table 2). The actions they 

applied are as follow: 

• ADD: Adding a reentrancy edge. 

• ADD-ADDN: Adding a reentrancy edge and a 

node. 

• REMOVE: Removing a reentrancy edge. 

• REMOVE-RMN: Removing a reentrancy edge and 

a node. 
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• MERGE: Merging two nodes. 

• MERGE-RMN: Merging two nodes and removing 

a node. 

• SPLIT: Splitting a node in two already existing 

nodes. 

• SPLIT-ADDN: Splitting a node in one existing 

node and a new node. 

 

• ADD-SIB: Adding an edge between siblings. 

• ADD-SIB-ADDN: Adding a node and an edge with 

one of its siblings. 

• REMOVE-SIB: Removing an edge between 

siblings. 

• REMOVE-SIB-RMN: Removing an edge between 

siblings and one of the siblings. 

TABLE 2 
RESULTS OF APPLYING ACTIONS ON THE TEST SPLIT OF LDC2015E86 AND LDC2017T10 [32]. 

Action LDC2015E86 LDC2017T10 

Frequency Smatch Reentrancy Frequency Smatch Reentrancy 

ADD 1292.0 1.7 10.4 1305.7 1.7 10.3 

ADD-ADDN 330.0 0.8 4.2 281.3 0.7 3.1 

RM 545.7 0.4 -0.1 572.3 0.4 -0.1 

RM-RMN 217.0 0.3 0.6 224.7 0.2 0.8 

MERGE 187.3 0.4 1.6 193.3 0.4 1.7 

MERGE-RMN  94.3 0.3 1.0 84.0 0.2 0.9 

SPLIT 574.7 1.2 1.8 541.3 1.1 1.7 

SPLIT-ADDN 333.0 0.9 -0.2 347.3 0.9 0 

ADD-SIB 128.0 0.2 1.3 119.7 0.1 1.2 

ADD-SIB-ADDN 99.7 0.1 -0.1 104.3 0.1 0 

RM-SIB 69.3 0.1 0.2 89.3 0 0.2 

RM-SIB-RMN 0 0 -0.1 0 0 0 

All 3108.3 4.6 18.8 3093.7 4.4 18.0 

       

In Table 2, Frequency is the number of times the 

action could be applied, Smatch equals the parsing score, 

and Reentrancy shows the reentrancies prediction score. 

The table showed that the best improvements could be 

observed when applying all actions and the most relevant 

single oracle action was ADD. By correcting these errors, 

they could enhance Smatch in parsing performance and 

in reentrancy prediction. They detected main sources of 

reentrancies which have been ignored before. However, 

their heuristic models failed to find the causes of many 

reentrancies.  

We have categorized the AMR parsing methods into 

five main groups, which in the following sections, we 

will explain previous research in each category. 

A. Grammar-based method 

In these methods, a grammar is used to limit the 

graphs that are desired during a parsing process. Then, 

the graph with the highest score, which determined by a 

scoring function, would be the output. There are many 

grammar-based approaches to AMR parsing. Most of 

them include parsers based on Synchronous Hyper-edge 

Replacement Grammars (SHRGs), Combinatory 

Categorical Grammars (CCG), and Directed Acyclic 

Graph (DAG) automata. 

Chiang et al. [33] represented HRG1, which is one of 

the leading context-free rewriting grammars. It can be 

                                                           
1 Hyper-edge Replacement Grammars 

applied as an impressive formalism for graph recognition 

task on NLP applications, which works with large-scale 

graphs. They also expanded the HRG formulation to its 

Synchronous version SHRG, as the foundation for 

possible related tasks, like graph generation and parsing.   

Later, Peng et al. [34] and Peng and Gildea [35], for 

the first time suggested a real system for parsing AMRs 

with the use of SHRG. This parser modeled natural 

language strings with CFG2 and AMR graphs with HRG. 

Then, in the source side, a synchronous grammar was 

formalized with CFG and similarly, in the target side, 

with HRG. Having this synchronous grammar, the 

proposed parser could parse the considered sentence 

using CFG rules, and meantime could evolve the related 

graph from the derivation by deduction. Afterwards, to 

extract the appropriate set of SHRG rules from the 

training data, a sampling algorithm called Markov Chain 

Monte Carlo (MCMC) was used to learn the most 

probable derivation according to sentence to AMR 

alignments. They exploited MCMC algorithms to learn 

SHRG rules from a forest that represents likely 

derivations consistent with a fixed string-to-graph 

alignment. Fig. 9 illustrates a sampled derivation from 

the forest. 

2 Context Free Grammar 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

c.
kn

tu
.a

c.
ir

 o
n 

20
25

-0
8-

30
 ]

 

                             8 / 31

http://joc.kntu.ac.ir/article-1-1044-en.html


Journal of Control (English Edition), VOL. 18, NO. 01, June 2024 
 

 

21 

 

 

Figure 9. The sampled derivation for the (sentence, AMR graph) pair 
[34]. 

Another grammar formalism is Combinatory 

Categorical Grammar (CCG) which establishes a 

transparent interface between underlying meaning 

representation and surface syntax, has been widely 

applied in semantic parsing applications. First time Artzi 

et al. [36] suggested applying CCG formalism for parsing 

AMR. They proposed a process with two phases, to take 

advantage of this formalism completely and keep a 

relatively compact grammar. In the first phase, CCG is 

used for parsing a considered sentence to an unspecified 

logical structure. It was a lambda-calculus equal form of 

AMR representation, which does not include non-

compositional reasoning. In the second phase, a factor 

graph model eliminates the unspecified part of structure 

that needs global deduction. CCG-based AMR parser has 

some notable benefits. For example, it does not need a 

sentence-to-AMR alignment. This feature helps to 

prevent the error propagation from the aligner. 

Furthermore, the feature enables it to be generalize to 

more languages. Fig. 10 illustrates the factor graph used 

in generating the complete derivation for the sentence 

Pyongyang officials denied their involvement, including 

all the variables and a subset of the factors. 

 

Figure 10. A visualization of the factor graph constructed for an 
example sentence’s derivation [36]. 

In Fig. 10 variables are highlighted in gray and the set 

of possible assignments are marked with a dashed arrow. 

Plus, solid lines represent edges. This example just 

includes a subset of the factors. Factor A takes selectional 

preference between the have-org-role-91 and official to 

detect the REL relation. Factor B does the same for 

person and have-org-role-91 to detect REF-of. Both 

factors C2 and C3 account for selectional preferences 

when resolving ID. In C2, they considered the 

assignment 2, which makes an ARG1 relation between 

involve-01 and person. Similarly, C3 considers the 

assignment 3. 

B. Graph-based method 

These techniques attempt to construct a graph, by 

maximizing a scoring function for graphs. 

Flanigan et al. [37] introduced Graph-based AMR 

parsing methods and JAMR was the first AMR parser 

they proposed. The idea of JAMR method is inspired 

from graph-based techniques that are suitable for non-

projective syntactic dependency parsing. This approach 

is extensively used for identifying relations. They 

proposed an algorithm, which first identified the concepts 

by using a semi-Markov model and then identified the 

relations between them by searching for a Maximum 

Spanning Connected subGraph (MSCG). In order to get 

English AMR alignments in the pre-processing step, they 

represented a heuristic aligner based on a pre-defined set 

of rules. 

Jones et al. [38] introduced the first meaning-based 

SMT by applying a graph-structured semantic 

representation as a transfer layer between the source and 

the target language. They defined 3 methods for every 

stage of the semantics-based translation pipeline: one 

graph-to-word alignment algorithm and 2 synchronous 

grammar rule extraction algorithms. Plus, they studied 

the impact of syntactic annotations on semantics-based 

translation by designing 2 alternative rule extraction 

algorithms: one that needed just semantic annotations 

and one that used syntactic annotations and checked the 

influence of language and syntax bias in meaning 

representation structures by doing tests with 2 meaning 

representations, one biased toward an English syntax-like 

structure and one that was language neutral. 

Pourdamghani et al. [39] presented a statistical 

alignment model that unlike heuristic approaches, would 

automatically improve as more data becomes available. 

While the potential applications of AMR are manifold, 

their research explored the use of AMR in SMT. Their 

proposed model had 3 phases: pre-processing, training, 

and post-processing. In the pre-processing phase, they 

linearized the AMR graphs in order to convert them into 

strings, clean both the AMR and English sides by 

eliminating stop words and simple stemming and add a 

set of corresponding AMR/English token pairs to the 

corpus to help the training phase. The training phase was 

based on IBM models, but they modified the learning 

algorithm to symmetrically learn the parameters. 

Eventually, in the post-processing stage they rebuild the 

aligned AMR graph. 

In addition, Xue et al. [40] studied the use of AMR as 

mediator between multiple languages, suggesting that a 

higher level of abstraction might be significant to account 
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for lexicalization differences between languages. They 

translated 100 English sentences that had AMRs into 

Chinese and Czech in order to build AMRs for them. 

Then, they did a cross-linguistic comparison of English 

to Chinese and Czech AMRs, and it showed that in both 

cases the structure of AMRs for the language pairs were 

aligned acceptably and cases of linguistic divergence. 

Additionally, they recognized that the level of 

compatibility of AMR between English and Czech is 

lower than between English and Chinese. Thus, they 

declared that these comparisons could be useful for 

further improving the annotation standards for each of the 

3 languages and can result in more compatible annotation 

guidelines between the languages. 

In recent years, the JAMR parser framework has been 

investigated in two research. Both considered that the 

concept identification issue is a serious bottleneck and 

worked on it to solve this problem in the parser. Werling 

et al. [41] proposed an action set, which generate 

concepts, and during the concept identification stage, 

trained a classifier to generate extra concepts. These  

actions are very similar to the sources of concepts that 

proposed by Flanigan et al. [42]. Moreover, in the latter 

paper, authors suggested the infinite ramp loss to enhance 

the performance.  

In another research, Zhou et al. [43] introduced a 

graph-based parser that applied beam search method to 

recognize both relations and concepts. They applied the 

method for relation identification in an incremental 

fashion (Fig. 11 – Algorithm 1), and then incorporated 

the decoder into a unified framework based on multiple-

beam search (Fig. 11 – Algorithm 2), which allowed for 

the bi-directional information flow between the two 

subtasks in a single incremental model. They assigned 

weight to relations and concepts. Therefore, the resulting 

graph would have the highest score that satisfied similar 

constrains as JAMR approach. In addition, they applied 

the feature proposed in [37], and received an increase 

value for Smatch [15] F1 score by five points. 

Furthermore, in their research more features for concept 

ID were also introduced, which results in another 

improvement by 3 points.  
 

 

Figure 11. The pseudocode for algorithms used in [43]. 

The next graph-based AMR parser is the one that has 

been represented in [44] and then improved in [45]. In 

this parser, five Bi-LSTM1 networks were used, to make 

probability prediction for concepts, attributes, named 

entities, core argument relations and non-core relations. 

                                                           
1 Long Short-Term Memory 

Like the JAMR approach that has been introduced 

before, this parser detected concept fragments first. 

Afterwards, it linked them to each other via adding some 

edges meet similar constraints, exactly like JAMR 

approach. The remarkable difference between this parser 
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and JAMR, is the algorithm that has been used in this 

parser to add the required edges. This algorithm is 

greedy, that calculated probabilities just after adding each 

edge. 

Rao et al. [46] used learning methods, as search tools, 

to predict (find) target AMR graphs. Same as JAMR 

approach, concepts and relations are predicted, 

respectively. In the next step, this prediction may use the 

previous predictions results. In their research, the 

decomposer (graph to fragments) and the aligner, were 

completely similar to JAMR, however, it did not have a 

linkage constraint. Instead, the graph is linked by 

choosing a top node and linking all components to this 

selected node. 

C. Transition-based method 

These algorithms produce a graph within a sequence 

of actions. When an action is chosen, the alternatives of 

that action are not revised again. 

Parsers, which use these methods, consider the 

parsing process as application of a sequence of actions. 

Wang et al. [47], for the first time, introduced the idea of 

these algorithms for AMR parsing as transition-based 

dependency parsing algorithms. When a transition-based 

algorithm is applied, the AMR graph would be created in 

an incremental way, using actions that were chosen by a 

desired classifier.  

The transition-based method has been applied in 

previous research to transform the existing dependency 

trees to AMR graphs, and to directly transform sentences 

with possible extra annotations to AMR graphs [48-52]. 

For instance, Wang et al. [53] proposed a two-stage 

framework to parse a sentence into its AMR. Firstly, they 

applied a dependency parser to generate a dependency 

tree for the sentence. Secondly, they introduced a 

transition-based algorithm that transforms the 

dependency tree to an AMR graph. In this regard, they 

defined eight types of actions for the actions set. 

Brandt et al. [54] tried to improve AMR parsing using 

preposition semantic role labeling information retrieved 

from a multi-layer feed-forward neural network. 

Prepositional semantics was included as features into the 

transition-based AMR parsing system CAMR. The 

inclusion of the features changed the CAMR behavior 

when creating meaning representations triggered by 

prepositional semantics. Prepositions in conjunction with 

their arguments made a significant contribution to the 

meaning of sentences and therefore were a very intuitive 

supplement to AMR parsing.  

Goodman et al. [55] designed 2 extensions to AMR: 

1) Noise reduction, 2) Targeted exploration. The first one 

targeted the result of the complexity of the task and 

relieved the noise in the feature representation. The 

second one aimed the exploration steps of imitation 

learning towards scopes which were probable to give the 

most information in the context of a large action-space. 

They considered imitation learning methods as a toolbox 

which could be adjusted to fit the task’s specifications.  

Ballesteros and Al-Onaizan [56] proposed an AMR 

parser which generated AMR parses from plain text 

directly. They applied Stack-LSTMs in order to represent 

the parser state and make decisions greedily. The input of 

their parser was plain text sentences, and, through rich 

word representations, it predicted all actions (in a single 

algorithm) needed to generate an AMR graph 

representation for an input sentence; it managed the 

detection and annotation of named entities, word sense 

disambiguation and it made connections between the 

nodes detected towards building a predicate argument 

structure. Although the system which runs with just 

words is very competitive, they further improved the 

results incorporating POS tags and dependency trees into 

their model. Table 3 presents the parser actions and the 

effect on the parser state (contents of the stack, buffer) 

and how the graph was changed after applying the 

actions.  

TABLE 3 
PARSER TRANSITIONS [56]. 

 

Stackt Buffert Action Stackt+1 Buffert+1 Graph 

S u, B SHIFT u, S B - 

u, S B CONFIRM n, S B - 

u, S B REDUCE S B - 

u, v, S B MERGE (u, v), S B - 

u, S B ENTITY(l) (u : l), S B - 

u, S B DEPENDENT(r. d) u, S B 𝑢
𝑟

→ 𝑑 

u, v, S B RA(r) u, v, S B 𝑢
𝑟

→ 𝑣 

u, v, S B LA(r) u, v, S B 𝑢
𝑟

→ 𝑣 

u, v, S B SWAP u, S V, B - 
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Moreover, Fig. 12 depicts transition sequence for the 

sentence It should be vigorously advocated. 

 

Figure 12. Transition sequence for an example sentence (R represents 

the root symbol) [56]. 

Damonte et al. [57] introduced a transition-based 

approach which created AMR graphs in linear time via 

processing the sentences in a left-to-right manner. This 

approach was inspired by the ArcEager transition method 

for dependency tree parsing and was trained with 

feedforward neural networks. The authors noted that 

there are three main differences between AMRs and 

dependency trees which need extra adjustments for 

dependency parsers to be applied on AMRs. The first 

difference between these two structures is projectivity. 

English dependency trees are commonly projective, 

which means that there will not be any crossing arcs on 

condition that the edges have been drawn in the semi-

plane above the words. Although this limitation is 

agitated in English syntactic theories, it is not motivated 

for AMR structures. Secondly, unlike dependency trees, 

AMRs are graphs (not trees), as they could have nodes 

with multiple parents (reentrant nodes). Thus, in order to 

handle reentrancy, they dropped this constraint. Thirdly, 

in AMR there is not any straight mapping between a node 

in the graph and a word in the sentence. Hence, to 

determine alignments between the tokens in the sentence 

and the nodes in the AMR graph, they ran the JAMR 

aligner. 

                                                           
1 https://link.springer.com/chapter/10.1007/978-1-349-20568-4_1  

Peng et al. [58] introduced a technique that linearized 

AMR graphs in a way that could detect the interaction of 

relations and concepts. With the aim of tackling the data 

sparsity problem for the target vocabulary, they designed 

a categorization approach that initially mapped low 

frequency concepts and entity subgraphs in order to a 

reduced set of category types. Plus, they applied heuristic 

alignments in order to connect source side spans and 

target side concepts or subgraphs, for mapping each type 

to concepts of its corresponding target side. In decoding 

phase, they exploited the mapping dictionary, which was 

learned from the training data, or heuristic rules for 

certain types with the aim of mapping the target types to 

their corresponding translation as a post-processing 

procedure. In general, they introduced multiple 

techniques to create the sequence-to-sequence model 

work competitively against conventional AMR parsing 

systems.  

Groschwitz et al. [59] proposed a semantic parser for 

AMR that parsed strings into tree representations of the 

compositional construction of an AMR graph. They 

exploited standard neural methods for super-tagging and 

parsing dependency tree, limited by a linguistically 

principled typed system. To be more precise, they tried 

to make the compositional structure of the AMR explicit. 

They considered an AMR as concepts including atomic 

graphs that represent the words meanings. Besides, they 

merged compositionally by applying linguistic 

operations for merging a head with its modifiers and 

arguments. The authors designed this construction as 

terms over the AM algebra as proposed in [60], which 

had not any parser. In this regard, they illustrated that 

these terms can considered as dependency trees of the 

string, and they defined a dependency parser to map it to 

the related tree. In other words, they merged a neural 

super-tagger to detect the initial graphs for the individual 

words with a neural dependency approach. One 

significant issue is that the decoding issue was NP-

complete, as the output term of the AM algebra had to be 

well-typed semantically. Therefore, they introduced two 

approximation algorithms. One of them took the 

unlabeled dependency tree as given and the other one 

presumed all dependencies were projective.  

Non-projective parsing could be beneficial for 

managing reentrancy and arbitrary loops natively in 

AMR graphs. In this regard, Vilares and Gómez-

Rodríguez [61] proposed a non-projective transition-

based parser that worked in a left-to-right greedy manner. 

In their model, at every parsing setup, an oracle decides 

whether to make a concept or to link a pair of existing 

concepts. The single-head and acyclicity1 constraints are 

not required in AMR, because arbitrary graphs are 

allowed. Thus, in their method, reentrancy and cycles 

were exploited in order to model semantic relations 
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among concepts and to detect co-references. In this 

respect, they could propose a natural way to deal with 

them by eliminating the constraints from the Covington 

transition system. Besides, AMR parsing needs words to 

transform into concepts, and dependency parsing 

performed on a constant-length sequence. However, in 

AMR, words can be eliminated or produced a single or 

several concepts. Hence, in their work, further transitions 

and lookup tables designed in order to generate concepts 

when necessary. 

Wang et al. [62] represented a parser that formalized 

the AMR parsing procedure as a converting task from a 

dependency tree to an AMR graph. In addition, the 

perceptron algorithm was used to learn a linear model. In 

this PhD thesis, the author mentioned various properties 

of AMR parsing and accordingly introduced various 

algorithms to address them. In order to create the 

fundamental framework for graph parsing, Wang 

proposed a transition-based method that formalized 

AMR parsing as tree-to-graph transformation. 

Furthermore, different natural extensions to the parser 

explored, like inferring abstract concepts and exploring 

the richer feature space. Moreover, for handling the 

sparsity properties of AMR, the author applied a neural 

sequence labeling method to identify concepts. 

Afterwards, Wang introduced an automatic aligner that 

was far more suitable for the sentence-to-graph 

alignment plan. In addition, the author defined an end-to-

end Neural AMR parser that explored the possibility of 

handling all AMR phenomenon by applying an 

integrated model. Eventually, He could extend all this on 

English AMR parsing to Chinese AMR corpus without 

notable modification. 

Guo and Lu [63] defined a simple and efficient 

transition-based AMR. They operated the search in a 

purified search space using a compact AMR graph and 

an improved oracle. First, they introduced a compact 

representation for AMR graph. It made concepts and 

relations of an AMR graph easier and simplified the 

learning of the whole system. Then, based on that, they 

proposed a method to build the action sequence applied 

for training their model. The compact AMR graph 

included removing concepts and relations from an 

original AMR graph. For removing concepts, they 

divided AMR concepts into two groups: Lexical and 

Non-Lexical. Lexical concepts were extracted directly 

from tokens in the sentence, like lemmas, predicates with 

sense tags and tokens with quotation marks. Non-Lexical 

concepts were extracted by their child concepts, not 

directly from tokens in the sentence. Besides, for 

removing relations, they omitted specific relations in the 

original AMR graph in order to refine the search space. 

In addition, they designed some properties, which caused 

the compact graph to refine the search space more, such 

as Acyclicity, Simple, Non-terminal restricted and 

Reentrancy restricted. They achieved remarkable results 

for Named Entities, Concepts and Wikification. 

Additionally, they obtained acceptable results on 

reentrancy identification. However, they eliminated 

several reentrant edges during training phase. Their 

proposed compact AMR graph could encode significant 

information, but their model did not have good enough 

performance on predicating Negations. In this regard, 

one reason was that the parser was a word-level one, and 

it was not easy for it to detect morphological 

specifications, like prefixes «in», «un», «il» etc.  

Naseem et al. [64] reinforced the Stack-LSTM AMR 

parser. They did this via fortifying training with self-

critical Policy Learning and considering the sentence-

level Smatch score as reward of sampled graphs. Besides, 

they merged some AMR-to-text alignments with an 

attention mechanism, and they applied named entities, 

pre-processed concept identification and contextualized 

embedding in order to fulfill the parser. Their proposed 

method was specifically suitable for AMR parsing, 

because it solved the problems arising from the lack of 

token-level AMR-to-text alignments. In addition, they 

applied different modifications that were inspired from 

neural MT. 

Welch et al. [65] investigated the impact of using 

world knowledge in semantic parsing with AMR. They 

tried to find different types of errors of AMR parsers and 

tackle these errors by exploiting world knowledge to 

decrease them. The authors concentrated on three groups 

of knowledge from Wikipedia entity links, WordNet 

hypernyms and super senses, and retraining a named 

entity recognizer with the aim of detecting concepts in 

AMR. Their initial results showed that the retrained 

entity recognizer was not flawless and could not detect 

all concepts in AMR. Besides, they studied the 

limitations of the named entity features by using a set of 

oracles, which proved it could have positive impact on 

performance and condition that it can detect various 

subsets of AMR concepts. After examining the impact of 

various types of world knowledge for AMR semantic 

parsing, they investigated the upper bound on world 

knowledge by applying gold annotations and attempted 

to give modern visions about the world knowledge’s 

potential in computational techniques to AMR parsing. 

Eventually, they proposed methods to improve the 

performance of AMR parsers. Specifically, they 

recognized that the combination of WordNet features 

named entities could lead to perfect results on almost all 

metrics, except Negation and SRL. Moreover, they tried 

to exploit other types of world knowledge, such as word 

embedding and node embedding, and it did not result in 

expected improvements. This presented that following 

research methods in AMR parsing should concentrate on 

improvements in training data or parsing approaches. 

Gu et al. [66] designed a general AMR parsing model 

that employed a two-stack-based transition algorithm. 

They applied the model on Chinese and English datasets. 
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The model could parse the input sentences to AMR 

graphs in linear time, incrementally. The main approach 

of their paper was based on the arc-eager algorithm. It 

used heuristic search method for concept recognition. In 

order to modify the transition algorithm to suit AMR 

transformation, they introduced a two-stack-based 

transition algorithm to solve the problem in AMR 

parsing. This algorithm was an extended Shift/Reduce 

decoding algorithm based on two stacks. They applied 

more appropriate feature representation to enrich feature 

representation learning in the prediction of transition 

actions. As shown in Fig. 13, their proposed model 

divided into 6 phases.  

In Fig. 13, the main aim of AMR concept annotation, 

named-entity recognition and pre-training phases was 

pre-processing of their method. According to external 

datasets, they trained word embedding using Word2Vec 

model as the input of this model. The AMR concept 

annotation, in phase 1, aligned words to concepts and 

builds an alignment table through an aligner, which is the 

input for the concept recognition phase. Additionally, 

they utilize Corenlp1 to label named entities in dataset as 

features for the concept recognition module and 

transition-based AMR parsing module. 

 
Figure 13. General automatic semantic parsing model from [66]. 

Zhou et al. [67] introduced a transition-based model 

which, incorporated hard-attention over sentences with a 

target-side action pointer mechanism to decouple source 

tokens from node representations and address 

alignments. They constructed the transitions and the 

pointer mechanism through straightforward 

modifications within a single Transformer architecture. 

Parser state and graph structure information were 

effectively encoded using attention heads. In other 

words, they proposed an Action-Pointer mechanism that 

could simply manage the generation of arbitrary graph 

constructs, such as multiple nodes per token and 

reentrancy. Their structural modeling with incremental 

                                                           
1 https://stanfordnlp.github.io/CoreNLP/ 

encoding of parser and graph states based on a single 

Transformer architecture achieved the best results on all 

AMR corpora among previous methods with resembling 

learnable parameter sizes. 

D. Sequence-to-sequence-based method 

These methods, which are also called MT (Machine 

Translation) methods, generate the textual format for an 

AMR graph, straightly from the system input by 

sequence-to-sequence neural methods. Commonly, it 

needs some pre-/post-processing for simplifying the task. 

Due to the increasing applications of deep learning 

methods in NLP, researchers tried to use deep learning 

algorithms for AMR parsing. As one of the most efficient 

examples of them, neural networks have been widely 

used in this field. The notable achievements of neural 

network in computer vision and speech recognition field 

could attract many scientists to try to reach similar results 

in NLP branches, too.  

Barzdins and Gosko [68] for the first time used the 

sequence-to-sequence method for neural machine 

translation. Actually, they treated preorder traversal of 

AMR as foreign language strings and in this way, they 

did AMR (PENMAN notation) parsing. Meanwhile, they 

presented 2 extensions to the AMR Smatch scoring 

script. The first one combined the Smatch scoring script 

with the C6.0 rule-based classifier to produce a human-

readable report on the error patterns frequency observed 

in the scored AMR graphs. The second one combined a 

per-sentence Smatch with an ensemble method for 

selecting the best AMR graph among the set of AMR 

graphs for the same sentence. 

Reciprocally, Konstas et al. [69] addressed the 

sparsity issue by a self-training approach that employed 

a huge unannotated external corpus set. They defined a 

paired training procedure for improving both the text-to-

AMR parser and AMR-to-text generator. They first 

applied self-training to bootstrap a high-quality AMR 

parser from millions of unlabeled Gigaword sentences, 

afterwards applied the automatically parsed AMR graphs 

to pre-train an AMR generator. This paired training 

allowed both the parser and generator to learn accurate 

representations of fluent English text from weakly 

labeled examples, which were then fine-tuned by human 

annotated AMR data. Furthermore, they introduced a 

pre-processing procedure for the AMR graphs, that 

contained anonymizing entities and dates, grouping 

entity categories, and encoding nesting information in 

brief ways. Their pre-processing procedure boosted 

handling the data sparsity as well as substantially 

reducing the complexity of the AMR graphs. In this 

regard, they presented that any depth first traversal of the 

AMR is an effective linearization, and it is even possible 

to use a different random order for each example. 
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Foland and Martin [45] broke down the task of AMR 

parsing into some distinct subtasks and did each subtask 

using Bi-directional LSTM. Their system received an 

input sentence in form of a vector of word embeddings 

and applied a series of recurrent neural networks to 1) 

identify the basic set of nodes and subgraphs that 

comprised the AMR, 2) detect the set of predicate-

argument relations among those concepts, and 3) 

discover any relevant modifier relations that were 

present. As shown in Fig. 14, the parser extracted features 

from the sentence that were processed by a bidirectional 

LSTM network (B-LSTM) in order to create a set of 

AMR subgraphs, that included 1 or 2 concepts, besides, 

their internal relations to each other. Afterwards, features 

were processed by a pair of B-LSTM networks based on 

the sentence and these subgraphs in order to compute the 

probabilities of relations between all subgraphs. Then, all 

subgraphs were connected by applying an iterative, 

greedy algorithm to compute a single component graph, 

with all subgraphs connected by relations. Separately, 

another two B-LSTM networks computed attribute and 

name categories, that were then appended to the graph. 

Eventually, the subgraphs were expanded into the most 

probable AMR concept and relation primitives to 

produce the final AMR. 

 

Figure 14. A high-level block diagram of the parser [45]. 

Since transition-based parsing methods are efficient 

and simple, it is very absorbing to incorporate it with 

neural approach. In this regard, Buys and Blunsom [70] 

introduced a neural encoder-decoder transition-based 

system in order to parse semantic graphs. They used the 

sequence-to-sequence framework for learning the 

conversion from natural language to action sequences. 

Their proposed system was the first full-coverage 

semantic graph parser for Minimal Recursion Semantics 

(MRS). The model architecture applied stack-based 

embedding features, predicting graphs jointly with 

unlexicalized predicates and their token alignments. The 

system included a stack of graph nodes being processed 

and a buffer, holding a single node at a time. Plus, the 

main transition actions were shift, reduce, left-arc, right-

arc. The action taken at each step is given, along with the 

state of the stack and buffer after the action is applied, 

and any arcs added. Shift transitions generate the 

alignments and predicates of the nodes placed on the 

buffer. Items on the stack and buffer have the form (node 

index, alignment, predicate label), and arcs are of the 

form (head index, argument label, dependent index). 

Semantic representation of the sentence Everybody wants 

to meet John is illustrated in Fig. 15. The graph is based 

on the Elementary Dependency Structure (EDS) 

representation of MRS. The alignments are given 

together with the corresponding tokens, and lemmas of 

surface predicates and constants. Table 4 demonstrates an 

example transition sequence together with the stack and 

buffer after each step.  

 

Figure 15. Semantic representation of an example sentence [70]. 

TABLE 4 
AN EXAMPLE TRANSITION SEQUENCE RELATED TO REPRESENTATION 

IN FIG. 15 [70].  

Action Stack Buffer Arc added 

Init(1, 

person) 

[] (1, 1, person) - 

Sh(1, 

every_q) 

[(1, 1, person)] (2, 1, 

every_q) 

- 

La(BV) [(1, 1, person)] (2, 1, 

every_q) 

(2, BV, 1) 

Sh(2, _v_1) [(1, 1, person), 

(2, 1, every_q)] 

(2, 1, _v_1) - 

re [(1, 1, person)] (3, 2, _v_1) - 

La(ARG1) [(1, 1, person)] (3, 2, _v_1) (3, ARG1, 

1) 

In a similar way, Misra and Artzi [71] considered the 

CCG AMR parsing method, as a shift-reduce transition 

system. Besides, they learned it with a neural network 

algorithm. Their proposed parser exploited a neural 

network architecture that balances model capacity and 

computational cost. They trained by transferring a model 

from a computationally expensive log-linear CKY 

parser. Their learner tackled 2 challenges: 1) selecting the 

best parse for learning when the CKY parser generates 

multiple correct trees, 2) learning from partial derivations 

when the CKY parser fails to parse. 

Van Noord and Bos [72] investigated three different 

techniques for dealing with co-indexed variables in the 

output of neural semantic parsing of AMRs. They 

proposed them to address reentrancy for AMR parsing: 
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1) Copying concepts within training and restoring co-

indexation in a post-processing phase; 2) Indexing of co-

indexation explicitly; 3) Applying absolute paths to 

designate co-indexing. In general, their introduced 

technique exploited a character-based sequence-to-

sequence model in order to translate sentences to AMRs, 

also included pre-processing and post-processing phases. 

Their main goal was to detect the best techniques to 

manage reentrancy in neural semantic parsing and to 

illustrate the exact influence that each of the techniques 

had on the whole performance. 

Zhang et al. [73] designed an attention-based 

approach, which considered AMR parsing as sequence-

to-graph transduction. Most of AMR parsers apply pre-

trained aligners, data augmentation and external semantic 

resources, however, their suggested model was aligner-

free, and it could be trained efficiently using limited 

amounts of labeled AMR data. In addition, one of the 

main goals of their proposed model, supported by an 

extended pointer-generator network, was to manage 

reentrancy. It had two primary modules: Node and Edge 

prediction, which used an extended Pointer-Generator 

Network and a Deep Biaffine Classifier, respectively.  

As it is presented in Fig. 16, the first module included 

four main components: an encoder embedding layer, an 

encoder, a decoder embedding layer, and a decoder. For 

each decoding time-step, three probabilities 

𝑝𝑡𝑔𝑡 . 𝑝𝑠𝑟𝑐  𝑎𝑛𝑑 𝑝𝑔𝑒𝑛were calculated. The source, target 

and vocabulary attention distributions were weighted 

respectively by the three probabilities, and after that they 

summed to reach the final distribution, and then make the 

ultimate prediction. 

 

Figure 16. Node prediction [73].  

Regarding the second module as shown in Fig. 17, 

unlike most methods, which re-encode AMR nodes, they 

applied decoder-hidden states directly from the network 

in the first module as the input to the Deep Biaffine 

Classifier [74].  

 

Figure 17. Edge prediction [73]. 

In Fig. 16 and 17, exploiting decoder-hidden states as 

input has two main advantages as follows: 

1) In the input-feeding strategy, hidden states of 

the decoder included contextualized 

information from both the input sentence and 

the predicted nodes.  

2) As decoder-hidden states were exploited for 

both node and edge prediction, in this approach 

the two modules can be jointly trained. 

Bai et al. [75] studied graph self-supervised training 

in order to enhance the structure awareness level of pre-

trained language models over AMR graphs. Specifically, 

they introduced two graph auto-encoding approaches for 

graph-to-graph pre-training and four methods for 

integrating text and graph information within pre-

training. Afterwards, they introduced a unified model to 

fill the gap between pre-training and fine-tuning 

applications. In this regard, they exploited BART [76] as 

the primary sequence-to-sequence method, and proposed 

graph pre-training approaches and a unified pre-training 

model for both AMR parsing and AMR-to-text 

generation. This approach led to pre-training on AMR 

structures exploiting BART. In brief, the authors defined 

four auxiliary pre-training tasks in order to enhance the 

rate of information exchange between text and graphs as 

follows: 

1) 𝑡𝑔2𝑡̂: Graph-augmented text de-noising in which 

an AMR graph was considered as supplementary 

input to boost the reconstruction of masked text. 

2) 𝑡𝑔2𝑔̂: Text-augmented graph de-noising in which 

text boosted the reconstruction of masked graph. 

3) 𝑡̂𝑔2𝑡̂: Noisy graph-augmented text de-noising in 

which the output text was generated according to 

a pair of masked graph and masked text. 
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4) 𝑡̂𝑔2𝑔̂: Noisy text-augmented graph de-noising in 

which an output graph was generated according to 

a pair of masked graph and masked text. 

Besides, in their proposed model, fine-tuning tasks 

meant that there was an empty graph/text in the primary 

input, which led to an input format of 𝑡̅𝑔2𝑔 for AMR-to-

text generation and 𝑡𝑔̅2𝑔 for AMR parsing. Using this 

model, pre-training and fine-tuning tasks shared the same 

input format, thereby facilitating knowledge transfer 

from pre-training to fine-tuning. 

E. Conversion-based and other methods 

In Conversion-based methods, the output of some 

semantic parsers is converted to AMR graphs. 

Conversion-based approach comprises transforming 

dependency trees to AMR [53] and transforming parsers’ 

outputs in the form of other meaning representations to 

AMR. These parsers have designed for logical form of 

Microsoft and the Treebank semantics corpus and 

Boxer’s discourse representation structures.  

As an example of remaining methods, Pust et al. [77] 

tried to create AMRs via a statistical MT system. They 

treated English-to-AMR conversion within the string-to-

tree, Syntax-Based Machine Translation (SBMT) 

framework. In this regard, they transformed the AMR 

structure into a suitable form for the SBMT. Besides, 

they defined an AMR-specific language model and added 

data and features extracted from semantic resources. 

Lyu and Titov [78] proposed a neural parser that 

considered alignments as latent variables in a joint 

probabilistic concepts model, alignments and relations. 

For a careful deduction, they needed to marginalize over 

alignments, which was infeasible. Therefore, they 

applied the variation auto-encoding framework, besides 

a continuous relaxation of the discrete alignments. 

Besides, they proofed that joint modeling was better than 

a pipeline of align and parse. 

One of the long-standing topics in natural language 

processing is semantic parsing. This has been used for 

meaning representation in basic NLU applications, 

including shallow rearrangements of text and deep 

meaning representations based on first order logic or 

other types of it. The mentioned systems applied meaning 

analyzers, which were designed for restricted domains. In 

similar deep meaning analyzers, the level of complexity 

was also increased. The open domain examples of these 

meaning analyzers have been designed too. Sometimes, 

they used a statistical parser to construct the required 

analysis. 

Applying supervised learning algorithms on semantic 

parsers, started for restricted domains using shallow and 

then deep meaning representations, however, we also 

could find some earlier research on learning meaning 

parsers in the literature.  

For the first time, Gildea and Jurafsky [79] suggested 

using supervised learning algorithms for open domain 

semantic parsers. Their work advocated structure of 

shallow meaning parsers, and their focus was on the 

semantic role labeling task and dependency parsing of 

these parsers. Their effort followed by other researchers 

to reach the goal of learning deep meaning parsers. 

Therefore, they could learn larger deep parsers, which 

still were restricted domain, using indirect supervising 

methods. Furthermore, their attempts were made to 

achieve the goal of designing robust open domain deep 

semantic parsers. These learning processes were done 

using partial annotation, unsupervised learning 

algorithms and indirect supervising methods. 

Klimeš [80-82] did some successive research for 

learning an open domain semantic parser with supervised 

ML algorithms, which were applied on the Prague 

Dependency Treebank (PDT). This procedure also called 

deep syntactic analysis and the PDT’s tec-to-grammatical 

layer could be assumed as a deep meaning representation. 

Interestingly, the representation had many similarities 

with AMR, although, it had some different handling 

methods for different semantic forms. 

IV.   AMR GENERATION 

There has been several research for statistical/non-

statistical NLG from various input representations, which 

in the following some of the most important ones will be 

introduced. 

Scientists have recognized that the generation process 

includes three different problems as follows: 

1) Text planning: Planning what to express to reach 

a communicative goal. 

2) Sentence planning: Splitting information into 

sentences and concepts. 

3) Surface realization: Declaring concepts in natural 

language.  

Overall, open domain Deep Semantic Generators 

(DSGs) have been designed using hand-written rules, and 

restricted domain DSGs have been learned with 

supervised learning algorithms. Besides, open domain 

DSGs have been learned by applying supervised learning 

techniques, and several hand-written rule-based 

generators have been constructed using statistical 

methods. However, AMR generators are the first open 

domain DSGs, which were learned by applying 

supervised learning algorithms, to the best of our 

knowledge. 

Prime generators used hand-crafted grammars which 

have been designed using these hand-crafted grammars, 

for both open and restricted domains approaches. In these 

systems, the input characteristics were very diverse, such 

as templates, deep syntax, abstract syntactic trees, and 

deep meaning representations.  

Examples of new surface recognizers with hand-

crafted grammars are KPML, PENMAN, RealPro and 

FUF/SURGE. However, these are general purpose 

systems, they may need to have fine lexical and 
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grammatical resources to tune them to a specific domain 

[83], besides, indeed they are not open domain in 

practice. Open domain generators, which use hand-

crafted grammars with great lexical databases, already 

exist like SimpleNLG. This generator maps from a 

slightly lower specification level compared with other 

ones, such as generators in the MT systems ETAP-3 and 

TectoMT, that map from deep syntax or UNL to English 

and Russian or deep syntax to English and Czech 

(TectoMT). 

The early effort applied ML for generation step and 

merged rule-based generators with statistical approaches. 

These systems used a rule-based generator, which 

generated too much, and using an N-gram language 

model. They finally produced the suitable output [84]. 

These systems generate the output from abstract syntax 

trees or from deep meaning representations. 

The initial studies, which tried to learn surface 

recognition from supervised training instances, could 

map from surface semantics to natural language in 

restricted domain cases. Each of them learned to map 

from feature tuples to templates, but the first system that 

managed to learn a mapping from a deep meaning 

representation to natural language was done by Wong 

and Mooney [85]. Their system worked on restricted 

domains such as RoboCup and GeoQuery, and there is 

important research, which followed up on them. These 

systems comprise enough small lexical databases, like 

KPML that have around 1000 lexical entries. It should be 

noted that open domain systems comprise many more 

entries, for example, ETAP-3 has more than 300,000 

entries and SimpleNLG includes over 65,000 lexical 

entries. Furthermore, some works using supervised 

techniques could learn open domain generators from 

deep and shallow syntax. 

There exists a wide range of research for statistical 

and non-statistical NLG using different input 

representation types. On one hand, research like Belz et 

al. [86] used a deep syntax representation that had some 

similarities with AMR. For example, these 

representations were graphs like AMR, with reentrances, 

and they had a concept inventory from of PropBank. 

Plus, they concentrated on sentence representation too. 

On the other hand, the Nitrogen system [84] and the 

Halogen system [87] both suggested using an input 

representation, which was a prelude to the modern AMR. 

Interestingly, they were also named it AMR, however, it 

was not similar to AMR. 

As mentioned before, the methods that have been 

used in statistical machine translation were also applied 

on NLG problems. Besides, several grammar-based 

techniques could be considered as weighted tree-to-string 

transducers. In this regard, Jones et al. [38] proposed a 

methodology for translation and generation using SHRG. 

They used the GeoQuery corpus in their research. 

Actually, this method can be used for AMR generation, 

too. 

Since AMR is adequately suited for English language, 

the AMR to English generation task could similarly 

consider as related NLG issues, like bag generation, 

generation from logical form or restoring order to 

unordered dependency trees. Undoubtedly, the deep logic 

of AMR created a significant challenge for English 

understanding. Here, it should be noted that another 

important feature of AMR is its abstraction from 

language details like time and number. 

Flanigan et al. [88] introduced a trained AMR to 

English generator. In their research, spanning trees 

generated from AMR graphs and then tree-to-string 

transducers applied to these trees to finally generated 

English language. Their generator, to our knowledge, 

was the first AMR generator in the literature, and was the 

first open domain generator from a deep meaning 

representation that was used supervised algorithms for 

learning. 

In addition, Pelja Paul et al. [89] proposed an 

automatic tool for generating text from AMR. They 

introduced an editor for AMR which was used in order to 

generate semantic representation for simple sentences. In 

this regard, they applied dependency parser and followed 

the stages: tokenization and POS tagging, dependency 

parsing, dropping articles (like plurality), focus 

identification and arguments identification. 

We classified the existing AMR generation 

approaches in six main categories, which explained their 

related works as follow sections. 

A. Tree-transducer-based method 

Two main systems have applied these methods for 

AMR generation, up to now. One of them introduced by 

Flanigan et al. [88] and the other system proposed by 

Gruzitis et al. [52]. The latter won the first place in the 

human evaluation section of SemEval 2017. It 

incorporated the JAMR system and a handwritten rule-

based generator. In that research, AMR graphs 

transformed to abstract syntax trees. Besides, the 

Grammatical Framework (GF) generator applied to 

generate English texts. In their system, if the GF 

generator could not generate the intended result, the 

JAMR output would be the alternative plan. This 

alternative method used in 88 percent of cases in the 

SemEval 2017 test set. 

B. Graph-grammar-based method 

Song et al. [90] suggested exploiting a Synchronous 

Node Replacement Grammar (SNRG) for generating 

from AMRs. SNRGs are equivalent to Synchronous 

CFGs (SCFGs), although one side of it is a graph 

grammar. In their research, they incorporated a SNRG 

and a feature-based statistical model, including a 

language model for generating natural language. An 
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example results of their system for the sentence now you 

understand how people like tmt in Fairfax feel is 

illustrated in Fig. 18. It can be seen that, in general, in 

most cases the semantics of the input AMR are correctly 

translated, like example, which is synonymous with such 

as, and thing, which is an abstract concept and should not 

be translated, however, there are a few errors, like that 

which in the result should be what, and there should be 

an in between tmt and fairfax. 

 

 

 

Figure 18. Generation example [90]. 

 

C. Graph-based method 

Song et al. [91] considered the AMR generation task 

as an Asymmetric Generalized Traveling Salesman 

Problem (AGTSP), wherein AGTSP nodes are 

equivalent with rules for mapping graph fragments of 

AMR to strings. In each AGTSP graph traversal, the 

AMR graph covered, and the generated strings ordered 

based on the orders of the AGTSP nodes that have 

visited. This is like considering the phrase-based MT as 

a traveling salesman issue; however, it is generalized to 

graph-to-string generation task. They also analyzed their 

model and JAMR-gen1 with an example AMR and show 

the AMR representation, the reference, and results in Fig. 

19. Firstly, both their model and JAMR-gen outputted an 

acceptable translation containing most of the meaning 

from the AMR. Although, their model failed to detect boy 

as the subject, as the feature set does not contain edge 

labels, like ARG0 and ARG1. Eventually, neither their 

model nor JAMR-gen could work properly in the 

situation when a re-entrance node (like b/boy) required to 

be translated twice. 

 

                                                           
1 https://github.com/jflanigan/jamr/tree/Generator  

 

Figure 19. Generation example [91]. 

D. Sequence-to-sequence-based method 

Sequence-to-sequence methods have been used for 

AMR generation a lot. Pourdamghani et al. [92] designed 

phrase-based MT on linearized AMR graphs, to try three 

separate linearization methods. Remarkably, they could 

achieve higher BLEU score in comparison with JAMR, 

however, they have been judged notably worse in the 

human evaluation section of SemEval 2017. This 

represented that BLEU score is not suitable for 

comparing, although it has been widely used in AMR 

generation applications. It should be noted that in some 

research BLEU score was seen to be weakly correlated 

with this score for several generation tasks.  

Konstas et al. [69] as mentioned before used 

sequence-to-sequence neural MT to linearized AMR 

graphs. They could reach significant progress as 

compared with previous methods when they employed 

pseudo-gold standard AMR graphs, that have been 

derived from performing usual AMR parsers on English 

Giga-word corpus called LDC2011T07. 

Recently, Fan and Gardent [93], unlike most related 

papers that worked only on generating into English, they 

focused on leverage advances in pre-training, cross-

lingual embedding, and multilingual models in order to 

build multilingual AMR-to-text models which could 

generate in 21 different languages. Their results show 

that for 18 natural languages, their proposed models 

could outperform baselines that generated into a single 

natural language. Besides, they analyzed the performance 

of the models in accurately capturing morphology and 

word order using human agent evaluation, and the results 

proved that native speakers considered the output 

generations to be fluent. In their research, in order to 

generate from AMRs, they applied neural sequence-to-

sequence methods that modeled the input AMR with a 

Transformer encoder and generated natural language 

with a Transformer decoder. In their model, as shown in 

Fig. 20, for all natural languages, the input was an 

English-centric AMR that derived automatically using 

the JAMR semantic parser from English text. They pre-

trained both the AMR encoder and the multilingual 

decoder and they used cross-lingual embedding. 
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Figure 20. One-to-Many schema for multilingual AMR generation 

[93]. 

 

E. Rule-based method 

Up to now, two main rule-based AMR generators 

have been proposed. Gruzitis et al. [52] represented a 

system wherein AMR graphs were transformed to 

abstract syntax trees. Then, the Grammatical Framework 

(GF) generator is applied to finally generate English. In 

their system, if the GF generator could not give an 

appropriate output, the JAMR output would be exploited.  

Mille et al. [94] proposed a system which could 

convert AMR graphs to surface-syntactic structures via 

applying a series of rule-based graph transducers. The 

main approach and strategy of their proposed generator 

was graph transduction of grammars converted, in 

various steps, abstract AMRs into syntactic structures 

which included all the morphological characteristics 

required for retrieving the final forms of all the words. 

After that the structures from previous step were 

linearized by a prevalent linearizer that comes from the 

first surface perception shared task, and eventually the 

final forms of the words were retrieved. In general, their 

generator follows the theoretical model of the Meaning-

Text Theory (MTT); the names of the intermediate layers 

mentioned in Table 5 are from the MTT terminology. 

TABLE 5 
OVERVIEW OF THE AMR-TO-TEXT PIPELINE [94]. 

 Step Layer #rul. 

0 Conversion of AMRs format into 

CoNLL’09 format 
ConS N/A 

1 Mapping of AMRs onto predicate-
argument graphs 

SemS 190 

2 Assignment of parts of speech 𝑆𝑒𝑚𝑆𝑝𝑜𝑠 96 

3 Derivation of deep syntactic structure 𝐷𝑆𝑦𝑛𝑡𝑆 267 

4 Introduction of function words SSuntS 294 

5 Resolution of agreements DMorphS 85 

6 Linearization SMorphS N/A 

7 Retrieval of surface forms Text 1 

8 Post-processing 𝑇𝑒𝑥𝑡𝑓𝑖𝑛𝑎𝑙 4 
 

F. Transition-based and other methods 

These methods consider the generation issue as a 

sequence of actions that selected by supervised ML 

algorithms.  

Lampouras and Vlachos [95] introduced a system in 

which AMR graphs were converted by employing a 

series of actions on syntactic dependency trees or tree 

structures like dependency trees and in the second step of 

the process they would be linearized. They designed a 

three-phase transition-based system for transforming an 

AMR graph to a dependency tree, in which the final 

sentence could then be acquired via a tree linearizer. An 

example transition from AMR graph to dependency tree 

of the sentence It makes one tremble even without fear is 

shown in Fig. 21. 

 

Figure 21. Example transition from AMR graph to dependency tree 

[95]. 

Schick [96] proposed a set of actions (transitions) like 

merging, deletion and swapping of edges and vertices. 

After applying these transitions to the input, the obtained 

tree structure was turned into a sentence by visiting its 

vertices in a specific order. They embedded various kinds 

of required actions into a transition system. To predict the 

correct sequence of transitions to be applied for each 

input, they trained maximum entropy models from a 

corpus of AMR graphs and corresponding realizations.  

Jin and Gildea [97] applied Transformer self-attention 

on graphs in order to allow global feature propagation. 

They trained a model to learn shortest paths by exploiting 

generalized shortest-paths algorithms, instead of feeding 

them into the vertex self-attention module. Their 

proposed technique could broaden the receptive field of 

a graph encoder by subjecting it to all probable graph 

paths. Then, the authors investigated how this path 

diversity influences the performance across levels of 

AMR connectivity, indicating gains on AMRs of higher 

reentrancy counts and diameters. Their analysis showed 

that the generated sentences had high semantic coherence 

for reentrant AMRs. In brief, the first advantage of the 

proposed method is that there is no need to pre-compute 
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shortest paths. Second and third ones are that more than 

one path considered per vertex pair by relation encoder 

and graph paths selected according to properties in 

addition to distance. The third advantage is very 

beneficial because shortest paths may over-simplify the 

input structure of more densely connected AMRs. Graph 

instances in which a node has more than one entering 

edge or instances that have reentrancies, could include 

competing shortest paths between a node pair. 

Eliminating either path between the two concepts can 

alter the AMR’s semantics. Besides, shortest paths can 

insufficiently represent the relation between concept 

pairs. Their proposed relation encoder solved both of 

these problems as it remarked all graph paths. In general, 

they designed two relation encoders using generalized 

shortest-paths methods for graph encoders.  

Ballesteros et al. [98] tried to generate natural 

language from a deep syntactic representation, which did 

not have the equivalent number of nodes with the surface 

syntax. This is the common problem that also should be 

solved when the system is going to generate from deep 

meaning representations like AMR. In their systems tree-

transducers used in the generation process. They 

suggested applying a sequence of SVM classifiers for 

transduction purpose, instead of using a weighted tree-

transducer. The data-driven generator was defined as a 

tree transducer framework that included a cascade of 6 

data-driven small tasks. The first 4 tasks captured the 

actions 1.–4. the 5th linearized the obtained surface-

syntactic structures. Fig. 22 provides a sample input and 

output of each sub-module. The system outputs a 14 

column CoNLL’09 linearized format without 

morphological punctuation or inflections marks. 

 

 

Figure 22. Workflow of the Data-Driven Generator [98]. 

 

V.  DISCUSSION 

In this section, AMR-related evaluation methods 

including metrics and datasets, AMR challenges and 

some main features of AMR in the form of some 

questions are described based on the papers that are 

studied in this paper.  

A. AMR Datasets 

One of the former datasets for AMR parsing was 

LDC2016E25 dataset. LDC released this corpus of 

AMRs in 2016, and it was a part of the DARPA DEFT 

program. LDC2016E25 contained 36521, 1368 and 1371 

sentences in its train, development and test sets, 

respectively. 

The most used version of the corpus was annotated by 

teams at LDC, SDL, and the Colorado University, is the 

expanded form of the previous releases (LDC2014T12, 

LDC2015E86, LDC2014E41 and LDC2017T10). It 

contains 39,260 sentences including 19,572, 18,779, 

13,051   AMRs from LDC2015E86, LDC2014E41 and 

LDC2014T12, partitioned into train, Development and 

test parts, token from various news and discussion forum 

sources [99]. People, who participated in the generation 

process, just had AMRs of the additional 1,293 sentences 

for evaluation task. In addition, the original sentences 

provided, if required, to evaluators during the human 

evaluation step.  

The most recent version of these datasets is 

LDC2020T02. The source data of it consists of 

discussion forums collected for the DARPA BOLT and 

DEFT programs, transcripts and translations into English 

of Mandarin Chinese broadcast news programming from 

China central television, Wall Street Journal (WSJ) text, 

translated Xinhua news texts, various newswire data 

from NIST OpenMT evaluations and weblog data that 

used in the DARPA GALE program.  

Table 6 shows the number of trainings, Developments 

(Dev), and tests as well as the total number of them for 

each related dataset.  

TABLE 6 
THE NUMBER OF TRAINING, DEV AND TEST FOR DATASETS [100]. 

 

Dataset Training Dev Test Totals 

BOLT DF MT 1061 133 133 1327 

Broadcast conversation 214 0 0 214 

Weblog and WSJ 0 100 100 200 

BOLT DF English 7379 210 229 7818 

DEFT DF English 32915 0 0 32195 

Aesop fables 49 0 0 49 

Guidelines AMRs 970 0 0 970 

LORELEI 4441 354 527 5322 

2009 Open MT 204 0 0 204 

Proxy reports 6603 826 823 8252 

Weblog 866 0 0 866 

Wikipedia 192 0 0 192 

Xinhua MT 741 99 86 926 

Total 55635 1722 1898 59255 
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There is a smaller dataset in the biomedical domain 

called Bio AMR Corpus1, which includes annotations of 

cancer-related PubMed2 articles, and the result sections 

of 46 additional PubMed papers. Also, it contains about 

1000 sentences from the BEL Bio Creative training 

corpus and the Chicago Corpus. The Bio AMR corpus 

divided into 3 parts: dev, training, test, which have 500, 

5452 and 500 sentences, respectively. 

B. AMR Evaluation 

In the following, the AMR metrics and an analysis of 

parsers and generators methods are provided. 

1) Metrics 

There is not any widely used evaluation metric for the 

whole sentence semantic structures, but there are two 

main criteria for evaluating the existing whole-sentence 

semantic parsers [101]:  

1. Correctness: It evaluates the performance of an 

NLP task that uses the parsing results.  

2. Accuracy: It counts number of sentences that 

has been parsed completely and correctly.  

According to these descriptions, it is necessary to 

design evaluation methods, which exploit scores that 

range from 0 to 1 called partial credit for measuring the 

whole-sentence semantic structures. Using these 

methods, researchers would be able to distinguish 

between two similar structures, without insisting on 

specific domains or tasks.  

It is possible to encode AMR graphs in the form of a 

conjunction of pairs as [variable1, variable2]. Therefore, 

considering two AMRs, it would be easy to calculate 

recall, precision, and their combination F1 score, via 

counting the number of matched pairs. It should be noted 

that, as AMR does not have inherent alignment among 

variables, there could be large numbers of probable 

matches. In this regard, Smatch [15] was introduced to 

solve this problem. This metric detects the highest F1 

score as calculated by (1), which is attainable through a 

one-to-one matching process of variables in two 

considered AMRs. Therefore, it can be said from one 

point of view that the issue become an NP-hard problem, 

and Smatch metric employs the known hill-climbing 

approach in order to reach the approximate inference. 

As Fig. 23 illustrates, the value of F1 score calculated 

using (1) for sentences The boy wants the book and The 

boy wants to go3 is 0.727. In (1), N is the number of 

matched equivalence concepts and edges (precision × 

recall), which is 4, and the total number of concepts and 

edges between two AMRs are 𝑐1 = 6 and 𝑐2 = 5 

respectively. 

F1 score =  
2 ×𝑁

𝑐1+ 𝑐2
=  

8

6+5
= 0.727     (1) 

                                                           
1 This corpus is accessible from https://amr.isi.edu/download/2018-01-25/amr-

release-bio-v3.0.txt 
2 https://pubmed.ncbi.nlm.nih.gov/  

 

Figure 23. AMR graphs for the two mentioned sentences. 

In general, Smatch [15] calculates the two AMR 

graphs score in terms of their matching edges (triples) by 

detecting a node (variable) mapping which maximizes 

the count as (2): 

𝑆𝑚𝑎𝑡𝑐ℎ = 𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ×(𝑃×𝑅) 

(𝑃+𝑅)
       (2) 

Where 𝑃 =  𝑀 𝑇⁄ and 𝑅 =  𝑀 𝐺⁄  is precision and 

recall measure, respectively. M is the number of 

matching triples, T is the total number of triples in the 

first AMR, G is the total number of triples in the second 

AMR. 

On the other hand, the most used method for 

evaluating generators is applying the Bilingual 

Evaluation Understudy (BLEU) score [102] that came 

from MT. Considering a candidate sentence 𝑤 and a 

reference sentence; 𝑤̂, the primary idea of BLEU is to 

count the number of matching N-grams between 𝑤 and 

𝑤̂. Then, it is divided by the total number of N-grams in 

the candidate sentence; 𝑤. Usually, this computation is 

done not just for one but for several values of N (for 

example n = 1, ..., 4) and the results are averaged 

subsequently. Like Smatch, the BLEU metric ranges 

from 0 to 1, however, in this paper the values of both 

metrics multiplied to 100 for simplicity. 

Allen et al. [103] introduced a metric that computed 

the maximum score using any alignment between LF 

(Logical Form) graphs; however, they did not explain 

how to find these alignments. Dridan and Oepen [104] 

used an approach for directly evaluating the meaning 

representation. This approach assessed the output of a 

semantic parser by comparing semantic sub-structures, 

albeit they needed a suitable alignment between semantic 

sub-structures and sentence spans. On the other hand, 

Smatch as an evaluation metric, does not need any 

alignment between the input sentence and its meaning 

analysis. 

Opitz et al. [105] designed criteria which allows to 

apply a principled evaluation of criteria comparing 

meaning representations such as AMR. They did a 

detailed analysis of Smatch and SEMBLEU metrics, in 

which they illustrated that the latter displayed some 

unpleasant attributes. For instance, it does not tend to 

detect the undistinguished rule and performed biases 

which were not easy to control. In addition, they 

3 Example is borrowed from https://github.com/nschneid/amr-

tutorial/tree/master/slides 
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introduced a metric 𝑆2𝑚𝑎𝑡𝑐ℎ which had weakness in 

facing with very scarce semantic deviations and its goal 

was to cover almost all existing aspects. Besides, they 

proved its superiority over Smatch and SEMBLEU, as 

the Smatch strength was in alignment-search between the 

variables of graphs and the SEMBLEU criterion worked 

on the ground of a variable-free AMR, which converted 

it to a bag of k-grams. As they pointed, circumventing a 

variable alignment search decreases computational cost 

and warrants complete determinacy. Plus, there is a 

tendency in implementing the metric based on BLEU, 

because BLEU is highly well-known in MT. Although, 

they recognized there was a lack of principled in-depth 

analogy among attributes of different AMR criteria 

which would help in choosing suitable metrics that 

should be applied in each AMR-related task. Moreover, 

as other metrics it does not measure graded semantic 

differences, they investigated a new feature in this regard. 

The semantic differences could appear because of near 

synonyms like ruin/annihilate; thin/skinny/slim; 

enemy/foe or paraphrases like can/be able to; 

unnecessary/not necessary. It is noteworthy that in a 

classical syntactic parsing task, criteria did not require to 

tackle this problem, as input tokens are typically 

projected to lexical concepts by lemmatization. Thus, 

two graphs for the same sentence tend to agree on the 

concepts projected from the input. However, this could 

be different in semantic parsing in which the projected 

concepts are usually more abstract. 

2)  Analysis of parsers and generators methods 

We presented the detailed features and evaluation 

(fine-grained F1 scores) of different AMR parsing 

methods based on Smatch score in Table 7. This metric 

is calculated on the predicted graphs without considering 

any edge label. It shows whether world knowledge 

results in improving performance on graph structure 

prediction.  

In Table 7; No WSD1 indicates the number of Word 

Senses appeared after concepts (e.g. both open-01 and 

open-02 would be considered as open), Named Entities 

are the value that only inspects whether the named entity 

concepts are correct, Negations are the polarity edges of 

the graph and calculate the correctness of negated 

concepts, Concepts are only concept labels; not edge 

labels, Reentrancy is reentrant edges in the AMR graph, 

SRL2 is the number of edge labels and Wikification is the 

number of wikifications in the AMR graph. 

Table 7 indicates that the AMR model can encode 

significant information, even though, some of the recent 

models did not work good-enough in predicating 

Negations. Possibly, the main reason is that these parsers 

methods were word-level ones, and it was complicated 

for them to detect morphological features like prefixes 

                                                           
1 Word Sense Disambiguation 

«in», «ir», «un», etc. Thus, it expected to achieve higher 

performance if the character-based representations 

applied instead or in combination with previous methods. 

Table 8 presents the features of various parsers 

methods developed on various datasets. From Table 8, it 

can be concluded that almost all methods either had an 

approximately high complexity or applied a pipeline 

methodology. Moreover, in general, seq2seq models 

approached the AMR graph in an end-to-end way and 

needed less features. Although often they faced the data 

sparsity problem, therefore, they used external corpora.  

Table 9 presents the evaluation of different AMR 

parsers on some existing and most used AMR-related 

datasets based on F1 scores. 

Table 10 presents the evaluation result of some of the 

main generating methods which are discussed in this 

paper according to Bleu metric. 

It is noteworthy that several AMR corpuses in non-

English languages, such as Chinese [107], has been 

produced and exploited in various NLP tasks.  

C. AMR challenges 

As mentioned in previous sections, AMR relies on 

PropBank verbal propositions and their arguments, 

guaranteeing all such semantic structures could be 

represented. The main purpose of AMR is to strictly 

abstract meaning. The AMR model abstracts away from 

morpho-syntactic idiosyncrasies, like word order or word 

category, and does not consider tense and number, in 

order to have a short annotation process and acquire 

concise meaning representations. Besides, most 

prepositions and articles, which called function words are 

eliminated, also it would not have universal quantifiers. 

It should be noted that, as AMR model is heavily 

dependent on Propbank framesets. 

AMR parsing have some primary challenges: 

abstraction, reentrancy data sparsity, and graph 

representation. The last one related to this principle that 

AMR is a non-tree graph formally, so new methods are 

required to parse input sentences into desired graphs. 

Wang [19] tackled this problem using a transition-based 

algorithm, which creates AMR graphs from dependency 

trees, incrementally. 

Abstraction challenge refers to this fact: AMR does 

not prepare any alignments between relations and 

concepts in an AMR graph and natural language word 

tokens. However, this connection is necessary for 

modeling the transformation process from a sentence 

dependency tree to an AMR graph. In other words, in 

contrast to a syntactic parse tree, the AMR graph is 

abstract. As a result, it may represent any number of 

sentences. Therefore, it does not contain any alignments 

between the sentence word tokens and the AMR graph 

concepts or relations, and the suitable aligner is required 

2 Semantic Role Labels 
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to map from tokens to concepts. Besides, an AMR parser 

must have the ability to infer the concepts that have 

deeper meaning of the sentence and is independent on 

any tokens, directly.  

Wang [19] provided a solution to this challenge, via 

the following steps:  

1) Infer concepts that were not aligned to any 

particular parts of the sentence directly using 

transition system 

2) Align string to AMR by graph-based aligner, 

which had benefits of the structural information 

in AMR graph.  

 

TABLE 7 
THE EVALUATION OF SOME AMR PARSING METHODS. 

Method Smatch Unlabeled 
No 

WSD 

Named 

Entities 
Wikification Negations Concepts Reentrancy SRL 

Jones et al. [38] 71.0 74.0 72.0 78.0 71.0 57.0 86.0 49.0 64.0 
Wang et al. [47] 67.0 69.0 64.0 75.0 - 18.0 80.0 41.0 60.0 
Wang et al. [53] 64.7 71.0 66.0 75.0 - 14.0 80.0 36.0 59.0 
Flanigan et al. [42] 67.0 69.0 68.0 79.0 75.0 45.0 83.0 42.0 60.0 
Damonte et al. [57] 64.0 69.0 65.0 83.0 70.0 47.0 83.0 41.0 57.0 
Ballesteros & Al-Onaizan [56] 

(JAMR) 
65.9 71.0 66.0 80.0 - 45.0 82.0 46.0 59.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) 
67.0 72.0 68.0 81.0 79.0 46.0 82.0 48.0 64.0 

Ballesteros & Al-Onaizan [56] 

+ Label 
68.3 73.0 69.0 79.0 78.0 62.0 82.0 51.0 66.0 

Ballesteros & Al-Onaizan [56] 

+ Label + POS1 
69.0 74.0 70.0 80.0 79.0 62.0 83.0 51.0 67.0 

Ballesteros & Al-Onaizan [56] 

+ Label + POS + DEP2 
69.4 75.0 70.0 81.0 79.0 65.0 83.0 52.0 67.0 

Ballesteros & Al-Onaizan [56] 

+ Label + POS + DEP + NER3 
69.8 75.0 70.0 83.0 79.0 62.0 83.0 52.0 67.0 

Ballesteros & Al-Onaizan [56] 

+ Label + POS+ DEP + NER + 

Concepts 

70.9 76.0 71.0 83.0 79.0 66.0 84.0 54.0 69.0 

Ballesteros & Al-Onaizan [56] 

+ Label + POS + DEP + NER 

+ Concepts + BERT 

72.9 78.0 73.0 83.0 78.0 67.0 84.0 58.0 72.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention 
69.8 75.0 70.0 80.0 78.0 63.0 83.0 53.0 68.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention + 

POS 

70.4 75.0 71.0 80.0 79.0 64.0 83.0 53.0 68.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention + 

POS + DEP 

70.7 75.0 71.0 80.0 79.0 62.0 83.0 53.0 68.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention + 

POS + DEP + NER 

70.8 76.0 71.0 83.0 79.0 64.0 83.0 53.0 68.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention + 

POS + DEP + NER + Concepts 

71.8 77.0 72.0 82.0 78.0 66.0 84.0 56.0 70.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention + 

POS + DEP + NER + Concepts 

+ BERT 

73.1 78.0 74.0 82.0 79.0 66.0 84.0 58.0 72.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention + 

POS + DEP + NER + Concepts 

+ BERT + Smatch 

73.6 78.0 74.0 84.0 79.0 64.0 85.0 59.0 72.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention + 

BERT 

73.4 78.0 74.0 83.0 79.0 64.0 84.0 57.0 71.0 

Ballesteros & Al-Onaizan [56] 

+ Label (JAMR) + Attention + 

POS + DEP + NER + Concepts 

+ BERT + Smatch + RL4 

75.5 80.0 76.0 83.0 80.0 67.0 86.0 56.0 72.0 

van Noord & Bos [106] 71.0 74.0 72.0 79.0 65.0 62.0 82.0 52.0 66.0 
Guo & Lu [63] 69.8 74.0 72.0 78.0 71.0 57.0 84.0 49.0 64.0 
Groschwitz et al. [59] (PD5) 71.0 74.0 72.0 78.0 71.0 57.0 84.0 49.0 64.0 
Groschwitz et al. [59] (FTD6) 70.0 74.0 70.0 77.0 71.0 55.0 84.0 46.0 62.0 
Vilares & Gómez-Rodríguez 

[61] 
64.0 68.0 65.0 83.0 70.0 47.0 83.0 44.0 57.0 

                                                           
1 Part of Speech 
2 Dependency Trees 
3 Named Entity labels 

4 Reinforcement Learning 
5 Projective Decoder 
6 Fixed-Tree Decoder 
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Welch et al. [65] (Retrained 

NER) 
65.0 71.0 66.0 77.0 - 14.0 80.0 36.0 58.0 

Welch et al. [65] (Oracle NER) 69.0 74.0 70.0 79.0 - 15.0 85.0 37.0 61.0 
Lyu & Titov [78] 74.4 77.0 76.0 86.0 76.0 58.0 86.0 52.0 70.0 
Naseem et al. [64] 75.5 80.0 76.0 83.0 80.0 67.0 86.0 56.0 72.0 
Zhang et al. [73] 76.3 79.0 77.0 78.0 86.0 75.0 85.0 60.0 70.0 
Gu et al. [66] 67.0 72.0 68.0 82.0 - 47.0 85.0 42.0 61.0 
Zhou et al. [67] (small) 81.7 85.4 82.2 88.9 78.7 67.5 88.9 70.6 80.7 
Zhou et al. [67] (base) 81.8 85.5 82.3 88.5 78.8 69.7 88.7 71.1 80.8 
Bai et al. [75] 85.4 88.3 85.8 91.5 81.4 74.0 91.2 73.5 81.5 

TABLE 8 
FEATURES OF VARIOUS PARSERS. 

Parser Category 
Features 

Pipeline 
POS DEP NER SRL Other 

Flanigan et al. [37] Graph-based ✓ ✓   No Yes 
Artzi et al. [36] Grammar-based ✓    No Yes 

Peng et al. [34] Grammar-based     No No 

Werling et al. [41] Graph-based ✓ ✓ ✓  No Yes 
Wang et al. [47] Transition-based ✓ ✓ ✓  No Yes 

Wang et al. [53] Conversion-based ✓ ✓ ✓ ✓ No Yes 

Pust et al. [77] Other methods   ✓  Word1 Yes 
Flanigan et al. [42] Graph-based ✓ ✓ ✓  No Yes 

Zhou et al. [43] Graph-based ✓ ✓ ✓ ✓ No No 

Barzdins & Gosko [68] Seq2Seq-based ✓ ✓ ✓  No Yes 
Goodman et al. [55] Transition-based ✓  ✓  No Yes 

Foland &  Martin [45] Seq2Seq-based   ✓  No Yes 

Wang & Xue [50] Transition-based ✓ ✓ ✓ ✓ No Yes 
Damonte et al. [57] Transition-based ✓ ✓ ✓ ✓ No No 

Buys &  Blunsom [70] Seq2Seq-based ✓  ✓  No No 

Ballesteros & Al-Onaizan [56] Transition-based ✓ ✓   No No 
Peng et al. [58] Transition-based ✓ ✓   No No 

Konstas et al. [69] Seq2Seq-based   ✓  Giga2 No 

van Noord & Bos  [72] Seq2Seq-based ✓    Silver3 No 
Groschwitz  et al. [59] Transition-based ✓  ✓  No No 

Vilares &  Gómez-Rodríguez [61] Transition-based ✓ ✓ ✓  No No 

Guo & Lu [63] Transition-based ✓    No No 
Lyu & Titov [78] Other methods ✓  ✓  No Yes 

Gu et al. [66] Transition-based ✓ ✓ ✓  No No 

Zhou et al. [67] Transition-based   ✓ ✓ No No 
Bai et al. [75] Seq2Seq-based     No No 

TABLE 9 
THE EVALUATION OF PARSERS ON DIFFERENT AMR DATASETS BASED ON F1 SCORE.  

Parser 

F1 score (%) 

LDC2014T12 

(Newswire section) 
LDC2014T12 LDC2015E86 LDC2017T10  

Flanigan et al. [37] 59.0 58.0 - - 

Artzi et al. [36] 67.0 - - - 

Peng et al. [34] - - 52.0 - 

Werling et al. [41] 62.0 - - - 

Wang et al. [47] 70.0 66.5 - - 

Wang et al. [53] - 66.5 67.3 - 

Pust et al. [77] - 67.1 - - 

Flanigan et al. [42] - 66.0 67.0 - 

Zhou et al. [43] 71.0 66.0 - - 

Barzdins & Gosko [68] - - 67.2 - 

Goodman et al. [55] 70.0 - 64.0 - 
Foland &  Martin [45] - - 70.7 - 

Wang & Xue [50] - 68.1 68.1 - 

Damonte et al. [57] - 64.0 64.0 - 

Buys &  Blunsom [70] - - - 61.9 

Ballesteros & Al-Onaizan [56] 69.0 64.0 - - 

                                                           
1 WordNet for concept identification 
2 20M unlabeled Giga-word 
3 100k additional training pairs created by using CAMR and JAMR 
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Peng et al. [58] - - 64.0 - 

Konstas et al. [69] - - 62.1 - 

van Noord & Bos [72] - - 68.5 71.0 

Groschwitz  et al. [59] - - 70.2 71.0 

Vilares &  Gómez-Rodríguez [61] - - 64.0 - 

Guo & Lu [63] 74.0 68.3 68.7 69.8 

Lyu & Titov [78] - - 73.7 74.4 

Gu et al. [66] 67.0 62.0 - - 

Zhou et al. [67] (small) - 78.2 - 81.7 

Zhou et al. [67] (base) - 78.5 - 81.8 

Bai et al. [75] - - - 85.4 

TABLE 10 
THE EVALUATION OF SOME AMR GENERATING METHODS BASED ON BLEU.  

Method BLEU 

Flanigan et al. [88] 22.10 

Pourdamghani et al. [92] 26.90 

Song et al. [91] 23.00 

Song et al. [90] 25.62 

Konstas et al. [69] 22.00 

Gruzitis et al. [52] 18.82 

Schick [96] 27.40 

Fan & Gardent [93] 29.70 

Jin & Gildea [97] 31.20 

In general, AMR provides a noteworthy level of 

abstraction of the utterance propositional content. 

Although, it cannot capture the force, the tense and the 

aspect of it.  

Reentrancy is the attribute that made AMR as a graph, 

not a tree; it means the same concept can participate in 

multiple relations. Parsing a sentence to a graph would 

need more complex approach, so it brings some 

challenges for both decoding and learning processes. 

Finally, data sparsity in AMR means that many of 

AMR concepts are word sense-disambiguated lemmas, 

which were drawn from Propbank, and since the AMR 

Bank is not big, a lot of concepts in development or test 

set just occurred a few times or even never appeared in 

the training set. Managing this challenge forces the 

learning algorithm to find the sharing features among 

similar concepts. Generally, researchers address this 

issue using deep learning and neural methods to produce 

a bi-directional LSTM-based concept identifier upon a 

re-designed concept set. 

Generating natural language from AMR is a 

completely complicated task. Because, its graph is 

abstracted away from their associated surface forms and 

the process needs training data, which has been 

extensively annotated by human agents. It can be said 

that this is still a preferred purpose, even if it is far away, 

because AMR eliminates all ambiguity from statements. 

In this regard, it can be mentioned that this aspect of 

AMR is a disadvantage too, as it makes all 

misunderstanding catastrophic. The other reason is the 

ambiguous aspects of natural language itself. Mostly, it 

happens in cases that even human agents cannot 

completely resolve ambiguities, or in cases that an 

ambiguous statement obtains importance. 

D. AMR features and future direction 

Here, we define some main questions about existing 

features of AMR and its future direction. 

What is difference between AMR and other meaning 

representation methods?  

What AMRs have in common with traditional 

meaning representation techniques is that logical 

conjunction is often implicit. Also, scope is not explicitly 

displayed in AMRs, thus the negation representation in 

AMR is completely different from previous approaches. 

The common denominator between AMR and some 

other meaning representation methods is the implicitness 

of the logical connections. However, in terms of 

expressiveness, the power of AMR is lower. In AMR, 

scope is not presented clearly; therefore, the negation 

representation in AMR is basically different from other 

meaning representation methods. Unlike other 

representations, AMR is able to represent various aspects 

of information structure, for example, the role inversion 

process could change the concept domain. Albeit the 

presentation of negation would lead to some changes in 

meaning. For example, as Discourse Representation 
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Structures (DRSs) [18] in a clausal structure is very 

similar to the triple notation of AMRs, and both of these 

representations try to model natural language meaning, it 

would be instructive to compare these two methods. The 

primary difference between these representations is that 

DRSs have explicit scopes and scope operators like 

negation. According to the existence of scope this 

method, their clauses are more complicated in 

comparison with AMR triples. The length of DRS 

clauses is not constant, and it can be three or four, unlike 

AMR, which the length of its triples is always three. 

Furthermore, DRS clauses include two different kinds of 

variables, for scopes and discourse referents, while there 

is only one type of AMR triples. Besides, DRS model 

considers the tense of sentences; in contrast, AMR does 

not represent tense. Generally, in DRS method the tense 

connected information is encoded in a clausal form with 

three extra clauses, which specify a WordNet concept, 

semantic role and a comparing operator. As every logical 

operator includes a scope, their number represents a 

lower boundary for the number of scopes in the semantic 

representations. In many applications of natural language 

processing like information retrieval, tense is not needed 

as a significant parameter for development. Therefore, 

AMR could perform faster in these applications. 

However, if in one application the tense should be 

processed too, a syntactic parser could be added to it.  

Is it possible to share AMR in different languages?  

Although AMR model extremely focused on English, 

it abstracts away from morphological and syntactical 

features that distinguish different natural languages. 

Therefore, it has the potential to be generalized to some 

similar or even all other natural languages. It seems that 

machine translation-based systems are not suitable in this 

area, and instead it is better to concentrate on projection-

based parsers. A review of related works illustrate that 

recent parsers can overcome divergence, which exists in 

the translation process. Besides, the approach for concept 

identification should be accurate enough to attain 

acceptable outcomes. Thus, in many cases the main 

reason for reaching the sub-optimal results by parsers, 

which use Smatch metric, is the existence of notable 

noise sources in the annotation projection method. It 

must be considered that it is not related to inconsistency 

in AMR among different languages. Therefore, having a 

global method for AMR parsing is possible and 

producing appropriate datasets in this regard would be 

counted as an important step. 

Is it possible to provide a theoretical semantic model 

for AMR?  

AMRs could be translated into FOL methodically, so 

this representation would have an indirect theoretical 

model interpretation. Indeed, AMRs do not have 

recurrent variables, so they can be mapped into a 

selectable part of FOL. This comprises the polarity flag 

existed in AMR in order to show negation. The mapping 

process is solely indicative and can be simply developed, 

for instance in Prolog program format.  

Is it necessary to expand the AMR language?  

In pursuance of handling weaknesses that currently 

AMR has, like quantifier scope and projection 

phenomena, the AMR language must be expanded. More 

research is still needed in this area. 

Is it possible to have universal quantifier in AMR? 

Using multiple polarity relations, the universal 

quantifier can be added to the initial AMR. Although 

only one universal quantifier can be applied in AMR. 

VI.   CONCLUSION 

In this paper, we reviewed related works about the 

AMR model, its syntax and main abilities. Furthermore, 

we reviewed the existing methods for generating natural 

language from AMR and parsing it to AMR. Afterwards, 

we explained how they have been applied in NLP tasks. 

Besides, we talked about the standard datasets and 

metrics that can be used for taking advantages of AMR 

graphs in different applications. Finally, we discussed 

some common challenges of working with AMR 

structure. Generally, AMR is constructed based on graph 

representation, abstraction and framesets. 

As discussed, the existed AMR corpus was created 

manually by human annotators and contains thousands of 

sentences already. In addition, AMRs can be displayed as 

conjunction of logical triples. In this regard, the 

previously introduced Smatch score can be applied to 

evaluate AMR parsing accuracy. In general, the AMR 

parsing and generation tasks have caught considerable 

amount of attention, as they are beneficial for vital NLP 

applications. However, there are still a lot of rooms for 

further improvements and there could be many pathways 

for future AMR-related works. One of the main ones is 

enlarging the AMR Bank corpus, which could result in 

better outcomes in NLU and NLG tasks. For example, in 

both AMR parsing and generation tasks, semi-supervised 

algorithms and human-collaborated approaches could 

enhance the performance level.  

Future research on graph-based AMR parsing may 

expand AMR to constitute more linguistically motivated 

constraints and higher order attributes. The other work 

could improve the prototypes for AMR-based systems. 

Undoubtedly, the AMR model will change in future, so 

finally it may contain more relations, quantification, or 

entity normalization. Besides, an acquisitive list of more 

abstract frames can also be imagined. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

c.
kn

tu
.a

c.
ir

 o
n 

20
25

-0
8-

30
 ]

 

                            27 / 31

http://joc.kntu.ac.ir/article-1-1044-en.html


Nasim Tohidi et al.: Abstract Meaning Representation: A State-of-the-Art Review 

 

40 
 

 

REFERENCES 
 

 

[1]  Marcus, Mitchell P.; Santorini, Beatrice; Marcinkiewicz, Mary 
Ann, "Building a Large Annotated Corpus of English: The Penn 

Treebank," Computational Linguistics, vol. 19, no. 2, pp. 313-

330, 1993.  

[2]  Abolghasemi, Majid; Dadkhah, Chitra; Tohidi, Nasim, "HTS-

DL: Hybrid Text Summarization System using Deep Learning," 

in The 27th International Computer Conference, the Computer 
Society of Iran, Tehran, Online, 2022.  

[3]  Tohidi, Nasim; Dadkhah, Chitra; Rustamov, Rustam B., 

"Optimizing the performance of Persian multi-objective 

question answering system," in 16th International Conference 

on “Technical and Physical Problems of Electrical 

Engineering”, Istanbul, Online, 2020.  

[4]  Tohidi, Nasim; Hasheminejad, Seyed Mohammad Hossein;, 

"MOQAS: Multi-objective question answering system," 

Journal of Intelligent & Fuzzy Systems, vol. 36, no. 4, pp. 3495-
3512, 2019.  

[5]  J. Flanigan, "Parsing and Generation for the Abstract Meaning 

Representation," Carnegie Mellon University, Pittsburgh, 2018. 

[6]  U. Weinreich, "On the Semantic Structure of Language," in On 

Semantics, Philadelphia, University of Pennsylvania Press, 

2018, pp. 37-96. 

[7]  Basile, Valerio; Bos, Johan; Evang, Kilian; Venhuizen, Noortje, 

"A platform for collaborative semantic annotation," in In 

Proceedings of the Demonstrations at the 13th Conference of 
the European Chapter of the Association for Computational 

Linguistics., 2012.  

[8]  Butler, Alistair; Yoshimoto, Kei., "Banking Meaning 
Representations from Treebanks.," Linguistic Issues in 

Language Technology, vol. 7, no. 6, pp. 1-22, 2012.  

[9]  Abend, O.; Rappoport A., "UCCA: A Semantics-based 
Grammatical Annotation Scheme.," in In Proceedings of the 

10th International Conference on Computational Semantics 

(IWCS 2013), 2013.  

[10]  Böhmová, Alena; Hajič, Jan; Hajičová, Eva; Hladká, Barbora, 

The Prague dependency treebank, vol. 20, Springer, 2003, p. 

103–127. 

[11]  Uchida, H.; Zhu, M.; Senta, T. D., "an electronic language for 

communication, understanding and collaboration.," UNL: 

Universal Networking Language, IAS/UNU Tokyo, 1996. 

[12]  Banarescu, Laura; Bonial, Claire; Cai, Shu; Georgescu, 

Madalina; Griffitt, Kira; Hermjakob, Ulf; Knight, Kevin; 

Koehn, Philipp; Palmer, Martha; Schneider, Nathan, "Abstract 
Meaning Representation for Sembanking," in In proceedings of 

the 7th Linguistic Annotation Workshop & Interoperability with 

Discourse, Sofia, Bulgaria, 2013.  

[13]  Tohidi, Nasim; Dadkhah, Chitra, "Abstract Meaning 

Representation Applications: A Short Review," in The 1st 

Conference on Artificial Intelligence and Smart Computing, 
Online, Semnan, Iran, 2022.  

[14]  J. Bos, "Expressive Power of Abstract Meaning 
Representations," Computational Linguistics, vol. 42, pp. 527-

535, 2016.  

[15]  Cai, Shu; Knight, Kevin, "Smatch: an Evaluation Metric for 

Semantic Feature Structures," in In Proceedings of the 51st 

Annual Meeting of the Association for Computational 

Linguistics (Volume 2: Short Papers), Sofia, Bulgaria, 2013.  

[16]  Knight, Kevin; Badarau, Bianca; Baranescu, Laura; Bonial, 

Claire; Bardocz, Madalina; Griffitt, Kira; Hermjakob, Ulf; 

Marcu, Daniel; Palmer, Martha; O'Gorman, Tim; Schneider, 

Nathan, "Abstract Meaning Representation (AMR) Annotation 

Release 3.0," Linguistic Data Consortium, Philadelphia, 2020. 

[17]  Jurafsky, Daniel; Martin, James H., Speech and Language 

Processing, Upper Saddle River, NJUnited States: Prentice 

Hall, 2019.  

[18]  J. Bos, "Economical Discourse Representation Theory," in 

International Workshop on Controlled Natural Language, 

Verlag Berlin Heidelberg, 2010.  

[19]  C. Wang, "Abstract Meaning Representation Parsing," PhD 

thesis, Brandeis University, 2018. 

[20]  Li, Bin; Wen, Yuan; Song, Li; Qu, Weiguang; Xue, Nianwen, 
"Building a Chinese AMR Bank with Concept and Relation 

Alignments," Linguistic Issues in Language Technology, vol. 

18, no. 1, 2019.  

[21]  Wein, Shira; Schneider, Nathan, "Classifying Divergences in 

Cross-lingual AMR Pairs," in The Joint 15th Linguistic 

Annotation Workshop (LAW) and 3rd Designing Meaning 
Representations (DMR) Workshop, Punta Cana, Dominican 

Republic, 2021.  

[22]  Pustejovsky, James; Lai, Ken; Xue, Nianwen, "Modeling 
Quantification and Scope in Abstract Meaning 

Representations," in The First International Workshop on 

Designing Meaning Representations, Florence, Italy, 2019.  

[23]  O’Gorman, Tim; Regan, Michael; Griffitt, Kira; Hermjakob, 

Ulf; Knight, Kevin; Palmer, Martha, "AMR Beyond the 

Sentence: the Multi-sentence AMR corpus," in The 27th 
International Conference on Computational Linguistics, Santa 

Fe, New Mexico, USA, 2018.  

[24]  Anikina, Tatiana; Koller, Alexander; Roth, Michael, 

"Predicting Coreference in Abstract Meaning Representations," 

in The Third Workshop on Computational Models of Reference, 

Anaphora and Coreference, Barcelona, Spain (online), 2020.  

[25]  Fu, Qiankun; Song, Linfeng; Du, Wenyu; Zhang, Yue, "End-to-

End AMR Coreference Resolution," in The 59th Annual 

Meeting of the Association for Computational Linguistics and 
the 11th International Joint Conference on Natural Language 

Processing (Volume 1: Long Papers), Online, 2021.  

[26]  Lai, Kenneth; Donatelli, Lucia; Pustejovsky, James, "A 
Continuation Semantics for Abstract Meaning Representation," 

in The Second International Workshop on Designing Meaning 

Representations, Barcelona, Spain (online), 2020.  

[27]  Bonn, Julia; Palmer, Martha; Cai, Zheng; Wright-Bettner, 

Kristin, "Spatial AMR: Expanded Spatial Annotation in the 

Context of a Grounded Minecraft Corpus," in The 12th 

Language Resources and Evaluation Conference, Marseille, 

France, 2020.  

[28]  Stein, Katharina; Donatelli, Lucia, "Representing Implicit 
Positive Meaning of Negated Statements in AMR," in The Joint 

15th Linguistic Annotation Workshop (LAW) and 3rd 

Designing Meaning Representations (DMR) Workshop, Punta 
Cana, Dominican Republic, 2021.  

[29]  Williamson, Gregor; Elliott, Patrick; Ji, Yuxin, 
"Intensionalizing Abstract Meaning Representations: Non-

Veridicality and Scope," in The Joint 15th Linguistic 

Annotation Workshop (LAW) and 3rd Designing Meaning 
Representations (DMR) Workshop, 2021.  

[30]  Donatelli, Lucia; Regan, Michael; Croft, William; Schneider, 

Nathan, "Annotation of Tense and Aspect Semantics for 
Sentential AMR," in The Joint Workshop on Linguistic 

Annotation, Multiword Expressions and Constructions (LAW-

MWE-CxG-2018), Santa Fe, New Mexico, USA, 2018.  

[31]  M. F. Bakal, "Graph-to-Graph Translations To Augment 

Abstract Meaning Representation Tense And Aspect," 

University of Michigan, 2021. 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

c.
kn

tu
.a

c.
ir

 o
n 

20
25

-0
8-

30
 ]

 

                            28 / 31

http://joc.kntu.ac.ir/article-1-1044-en.html


Journal of Control (English Edition), VOL. 18, NO. 01, June 2024 
 

 

41 

 

[32]  Szubert, Ida; Damonte, Marco; Cohen, Shay B.; Steedman, 

Mark, "The Role of Reentrancies in Abstract Meaning 
Representation Parsing," in Findings of the Association for 

Computational Linguistics: EMNLP 2020, Online, 2020.  

[33]  Chiang, David; Andreas, Jacob; Bauer, Daniel; Hermann, Karl 
Moritz; Jones, Bevan; Knight, Kevin, "Parsing graphs with 

hyperedge replacement grammars," in In Proceedings of the 

51st Meeting of the Association of Computational Linguistics 
(Volume 1: Long Papers), Sofia, Bulgaria, 2013.  

[34]  Peng, Xiaochang; Song, Linfeng; Gildea, Daniel, "A 

synchronous hyperedge replacement grammar based approach 
for AMR parsing," in In Proceedings of the Nineteenth 

Conference on Computational Natural Language Learning, 

Beijing, China, 2015.  

[35]  Peng, Xiaochang; Gildea, Daniel, "UofR at SemEval-2016 task 

8: Learning synchronous hyperedge replacement grammar for 

AMR parsing," in In Proceedings of the 10th International 
Workshop on Semantic Evaluation (SemEval-2016), San Diego, 

California, 2016.  

[36]  Artzi, Yoav; Lee, Kenton; Zettlemoyer, Luke, "Broad-coverage 
CCG semantic parsing with AMR," in In Proceedings of the 

2015 Conference on Empirical Methods in Natural Language 

Processing, Lisbon, Portugal, 2015.  

[37]  Flanigan, Jeffrey; Thomson, Sam; Carbonell, Jaime; Dyer, 

Chris; Smith. Noah A., "A Discriminative Graph-Based Parser 

for the Abstract Meaning Representation," in Proceedings of 
the 52nd Annual Meeting of the Association for Computational 

Linguistics, Baltimore, Maryland, 2014.  

[38]  Jones, Bevan; Andreas, Jacob; Bauer, Daniel; Hermann, Karl 

Moritz; Knight, Kevin, "Semantics-Based Machine Translation 

with Hyperedge Replacement Grammars," in In Proceedings of 

COLING., 2012.  

[39]  Pourdamghani, Nima; Gao, Yang; Hermjakob, Ulf; Knight, 

Kevin, "Aligning English Strings with Abstract Meaning 

Representation Graphs," in In Proceedings of the 2014 
Conference on Empirical Methods in Natural Language 

Processing (EMNLP), Doha, Qatar, 2014.  

[40]  Xue, Nianwen; Bojar, Ondřej; Hajič, Jan; Palmer, Martha; 
Urešová, Zdeňka; Zhang, Xiuhong, "Not an Interlingua, But 

Close: Comparison of English AMRs to Chinese and Czech," 

in In Proceedings of the Ninth International Conference on 
Language Resources and Evaluation (LREC'14), Reykjavik, 

Iceland, 2014.  

[41]  Werling, Keenon; Angeli, Gabor; Manning, Christopher D., 

"Robust Subgraph Generation Improves Abstract Meaning 

Representation Parsing," in In Proceedings of the 53rd Annual 

Meeting of the Association for Computational Linguistics and 
the 7th International Joint Conference on Natural Language 

Processing (Volume 1: Long Papers), Beijing, China, 2015.  

[42]  Flanigan, Jeffrey; Dyer, Chris; Smith, Noah A.; Carbonell, 
Jaime, "CMU at SemEval-2016 task 8: Graph-based AMR 

parsing with infinite ramp loss," in In Proceedings of the 10th 
International Workshop on Semantic Evaluation (SemEval- 

2016), San Diego, California, 2016a.  

[43]  Zhou, Junsheng; Xu, Feiyu; Uszkoreit, Hans; QU, Weiguang; 
Li, Ran; Gu, Yanhui, "AMR parsing with an incremental joint 

model," in In Proceedings of the 2016 Conference on Empirical 

Methods in Natural Language Processing, Austin, Texas, 2016.  

[44]  Foland, William; Martin, James H., "CU-NLP at SemEval-2016 

task 8: AMR parsing using LSTM-based recurrent neural 

networks," in In Proceedings of the 10th 
InternationalWorkshop on Semantic Evaluation (SemEval-

2016), San Diego, California, 2016.  

[45]  Foland, William; Martin, James H., "Abstract meaning 
representation parsing using LSTM recurrent neural networks," 

in In Proceedings of the 55th Annual Meeting of the Association 

for Computational Linguistics (Volume 1: Long Papers), 
Vancouver, Canada, 2017.  

[46]  Rao, Sudha; Vyas, Yogarshi; Daumé III, Hal; Resnik, Philip, 

"CLIP@UMD at SemEval-2016 Task 8: Parser for Abstract 
Meaning Representation using Learning to Search," in In 

Proceedings of the 10th International Workshop on Semantic 

Evaluation (SemEval-2016), San Diego, California, 2016.  

[47]  Wang, Chuan; Xue, Nianwen; Pradhan, Sameer, "Boosting 

transition-based AMR parsing with refined actions and 

auxiliary analyzers," in In Proceedings of the 53rd Annual 
Meeting of the Association for Computational Linguistics and 

the 7th International Joint Conference on Natural Language 

Processing (Volume 2: Short Papers), Beijing, China, 2015a.  

[48]  Goodman, James; Vlachos, Andreas; Naradowsky, Jason, 

"UCL+Sheffield at SemEval-2016 Task 8: Imitation learning 

for AMR parsing with an alpha-bound," in In Proceedings of 
the 10th International Workshop on Semantic Evaluation 

(SemEval-2016), San Diego, California, 2016b.  

[49]  Puzikov, Yevgeniy; Kawahara, Daisuke; Kurohashi, Sadao, 
"M2L at SemEval-2016 task 8: AMR parsing with neural 

networks," in In Proceedings of the 10th International 

Workshop on Semantic Evaluation (SemEval-2016), San Diego, 
California, 2016.  

[50]  Wang, Chuan; Xue, Nianwen, "Getting the Most out of AMR 

Parsing," in In Proceedings of the 2017 Conference on 
Empirical Methods in Natural Language Processing, EMNLP 

2017, Copenhagen, Denmark, 2017.  

[51]  Nguyen, Khoa; Nguyen, Dang, "UIT-DANGNTCLNLP at 

SemEval-2017 Task 9: Building Scientific Concept Fixing 

Patterns for Improving CAMR," in In Proceedings of the 11th 

InternationalWorkshop on Semantic Evaluation (SemEval-
2017), Vancouver, Canada, 2017.  

[52]  Gruzitis, Normunds; Gosko, Didzis; Barzdins, Guntis, 

"RIGOTRIO at SemEval-2017 Task 9: Combining Machine 
Learning and Grammar Engineering for AMR Parsing and 

Generation.," in In Proceedings of the 11th International 

Workshop on Semantic Evaluation (SemEval-2017), 
Vancouver, Canada, 2017.  

[53]  Wang, Chuan; Xue, Nianwen; Pradhan, Sameer, "A transition-

based algorithm for amr parsing," in Proceedings of the 2015 
Conference of the North American Chapter of the Association 

for Computational Linguistics: Human Language 

Technologies, Denver, Colorado, 2015b.  

[54]  Brandt, Lauritz; Grimm, David; Zhou, Mengfei; Versley, 

Yannick, "ICL-HD at SemEval-2016 Task 8: Meaning 

Representation Parsing - Augmenting AMR Parsing with a 
Preposition Semantic Role Labeling Neural Network," in In 

Proceedings of the 10th International Workshop on Semantic 

Evaluation (SemEval-2016), San Diego, California, 2016.  

[55]  Goodman, James; Vlachos, Andreas; Naradowsky, Jason, 

"Noise reduction and targeted exploration in imitation learning 
for abstract meaning representation parsing," in Proceedings of 

the 54th Annual Meeting of the Association for Computational 

Linguistics (Volume 1: Long Papers), Berlin, Germany, 2016a.  

[56]  Ballesteros, Miguel; Al-Onaizan, Yaser, "AMR Parsing using 

Stack-LSTMs," in In Proceedings of the 2017 Conference on 

Empirical Methods in Natural Language Processing, 
Copenhagen, Denmark, 2017.  

[57]  Damonte, Marco; Cohen, Shay B.; Satta, Giorgio, "An 

Incremental Parser for Abstract Meaning Representation," in In 
Proceedings of the 15th Conference of the European Chapter 

of the Association for Computational Linguistics: Volume 1, 

Long Papers, Valencia, Spain, 2017.  

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

c.
kn

tu
.a

c.
ir

 o
n 

20
25

-0
8-

30
 ]

 

                            29 / 31

http://joc.kntu.ac.ir/article-1-1044-en.html


Nasim Tohidi et al.: Abstract Meaning Representation: A State-of-the-Art Review 

 

42 
 

[58]  Peng, Xiaochang; Wang, Chuan; Gildea, Daniel; Xue, 

Nianwen, "Addressing the Data Sparsity Issue in Neural AMR 
Parsing," in In Proceedings of the 15th Conference of the 

European Chapter of the Association for Computational 

Linguistics: Volume 1, Long Papers, Valencia, Spain, 2017.  

[59]  Groschwitz, Jonas; Lindemann, Matthias; Fowlie, Meaghan; 

Johnson, Mark; Koller, Alexander, "AMR dependency parsing 

with a typed semantic algebra," in The 56th Annual Meeting of 
the Association for Computational Linguistics (Volume 1: Long 

Papers), Melbourne, Australia, 2018.  

[60]  Groschwitz, Jonas; Fowlie, Meaghan; Johnson, Mark; Koller, 
Alexander, "A constrained graph algebra for semantic parsing 

with AMRs," in The 12th International Conference on 

Computational Semantics (IWCS), 2017.  

[61]  Vilares, David; Gómez-Rodríguez, Carlos, "A Transition-

Based Algorithm for Unrestricted AMR Parsing," in The 2018 

Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language 

Technologies, Volume 2 (Short Papers), New Orleans, 

Louisiana, 2018.  

[62]  Wang, Chuan; Li, Bin; Xue, Nianwen, "Transition-Based 

Chinese AMR Parsing," in The 2018 Conference of the North 

American Chapter of the Association for Computational 
Linguistics: Human Language Technologies, Volume 2 (Short 

Papers), New Orleans, Louisiana, 2018.  

[63]  Guo, Zhijiang; Lu, Wei, "Better Transition-Based AMR 
Parsing with a Refined Search Space," in The 2018 Conference 

on Empirical Methods in Natural Language Processing, 

Brussels, Belgium, 2018.  

[64]  Naseem, Tahira; Shah, Abhishek; Wan, Hui; Florian, Radu; 

Roukos, Salim; Ballesteros, Miguel, "Rewarding Smatch: 

Transition-Based AMR Parsing with Reinforcement Learning," 
in The 57th Annual Meeting of the Association for 

Computational Linguistics, Florence, Italy, 2019.  

[65]  Welch, Charles; Kummerfeld, Jonathan K.; Feng, Song; 
Mihalcea, Rada, "World Knowledge for Abstract Meaning 

Representation Parsing," in The Eleventh International 

Conference on Language Resources and Evaluation (LREC 
2018), Miyazaki, Japan, 2018.  

[66]  Gu, Min; Gu, Yanhui; Luo, Weilan; Xu, Guandong; Yang, 

Zhenglu; Zhou, Junsheng; Qu, Weiguang, "From text to graph: 
a general transition-based AMR parsing using neural network," 

Neural Computing and Applications, 2020.  

[67]  Zhou, Jiawei; Naseem, Tahira; Astudillo, Ramón Fernandez; 

Florian, Radu, "AMR Parsing with Action-Pointer 

Transformer," in the 2021 Conference of the North American 

Chapter of the Association for Computational Linguistics: 
Human Language Technologies, Online, 2021.  

[68]  Barzdins, Guntis; Gosko, Didzis, "RIGA at SemEval- 2016 

Task 8: Impact of Smatch Extensions and Character-Level 
Neural Translation on AMR Parsing Accuracy," in In 

Proceedings of the 10th International Workshop on Semantic 
Evaluation (SemEval-2016), San Diego, California, 2016.  

[69]  Konstas, Ioannis; Iyer, Srinivasan; Yatskar, Mark; Choi, Yejin; 

Zettlemoyer, Luke, "Neural AMR: Sequence-to-Sequence 
Models for Parsing and Generation," in In Proceedings of the 

55th Annual Meeting of the Association for Computational 

Linguistics, Vancouver, Canada, 2017.  

[70]  Buys, Jan; Blunsom, Phil, "Robust Incremental Neural 

Semantic Graph Parsing," arXiv, p. 1215–1226, 2017.  

[71]  Misra, Dipendra Kumar; Artzi, Yoav, "Neural shiftreduce ccg 
semantic parsing," in In Proceedings of the 2016 Conference on 

Empirical Methods in Natural Language Processing, Austin, 

Texas, 2016.  

[72]  van Noord, Rik; Bos, Johan, "Dealing with Coreference in 

Neural Semantic Parsing," in In Proceedings of the 2nd 
Workshop on Semantic Deep Learning (SemDeep-2), 2017a.  

[73]  Zhang, Sheng; Ma, Xutai; Duh, Kevin; Van Durme, Benjamin, 

"AMR Parsing as Sequence-to-Graph Transduction," in The 
57th Annual Meeting of the Association for Computational 

Linguistics, Florence, Italy, 2019.  

[74]  Dozat, Timothy; Manning, Christopher D., "Deep Biaffine 
Attention for Neural Dependency Parsing," in 

arXiv:1611.01734, 2016.  

[75]  Bai, Xuefeng; Chen, Yulong; Zhang, Yue, "Graph Pre-training 
for AMR Parsing and Generation," arXiv:2203.07836, vol. 3, 

pp. 1-15, 2022.  

[76]  Lewis, Mike; Liu, Yinhan; Goyal, Naman; Ghazvininejad, 

Marjan; Mohamed, Abdelrahman; Levy, Omer; Stoyanov, 

Veselin; Zettlemoyer, Luke, "BART: Denoising Sequence-to-

Sequence Pre-training for Natural Language Generation, 
Translation, and Comprehension," in The 58th Annual Meeting 

of the Association for Computational Linguistics, Online, 2020.  

[77]  Pust, Michael; Hermjakob, Ulf; Knight, Kevin; Marcu, Daniel; 
May, Jonathan, "Parsing English into Abstract Meaning 

Representation Using Syntax-Based Machine Translation," in 

In Proceedings of the 2015 Conference on Empirical Methods 
in Natural Language Processing, Lisbon, Portugal, 2015.  

[78]  Lyu, Chunchuan; Titov, Ivan, "AMR Parsing as Graph 

Prediction with Latent Alignment," in In Proceedings of the 
56th Annual Meeting of the Association for Computational 

Linguistics (Volume 1: Long Papers), Melbourne, Australia, 

2018.  

[79]  Gildea, Daniel; Jurafsky, Daniel, "Automatic Labeling of 

Semantic Roles," in In 38th Annual Meeting of the Association 

for Computational Linguistics, Hong Kong, 2000.  

[80]  V. Klimeš, "Analytical and Tectogrammatical Analysis of a 

Natural Language," Ph.D. thesis, Charles University, Prague, 

2006a. 

[81]  V. Klimeš, "Transformation-based tectogrammatical analysis 

of czech," in In International Conference on Text, Speech and 

Dialogue, Berlin, Heidelberg, 2006b.  

[82]  V. Klimeš, "Transformation-based tectogrammatical 

dependency analysis of english," in In International Conference 

on Text, Speech and Dialogue, Berlin, Heidelberg, 2007.  

[83]  Bohnet, Bernd; Wanner, Leo; Mille, Simon; Burga, Alicia, 

"Broad coverage multilingual deep sentence generation with a 

stochastic multi-level realizer," in In Proceedings of the 23rd 

International Conference on Computational Linguistics, 

Beijing, China, 2010.  

[84]  Langkilde, Irene; Knight, Kevin, "Generation that exploits 
corpus-based statistical knowledge," in In Proceedings of the 

36th Annual Meeting of the Association for Computational 

Linguistics and 17th International Conference on 
Computational Linguistics, Volume 1, Montreal, Quebec, 

Canada, 1998.  

[85]  Wong, Yuk Wah; Mooney, Raymond, "Generation by inverting 

a semantic parser that uses statistical machine translation," in 

Human Language Technologies 2007: The Conference of the 
North American Chapter of the Association for Computational 

Linguistics; Proceedings of the Main Conference, Rochester, 

New York, 2007.  

[86]  Belz, Anja; White, Michael; Espinosa, Dominic; Kow, Eric; 

Hogan, Deirdre; Stent, Amanda, "The first surface realisation 

shared task: Overview and evaluation results," in In 
Proceedings of the 13th European workshop on natural 

language generation, Nancy, France, 2011.  

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

c.
kn

tu
.a

c.
ir

 o
n 

20
25

-0
8-

30
 ]

 

                            30 / 31

http://joc.kntu.ac.ir/article-1-1044-en.html


Journal of Control (English Edition), VOL. 18, NO. 01, June 2024 
 

 

43 

 

[87]  I. Langkilde, "Forest-based statistical sentence Generation," in 

In proceedings of 1st Meeting of the North American Chapter 
of the Association for Computational Linguistics, 2000.  

[88]  Flanigan, Jeffrey; Dyer, Chris; Smith, Noah A.; Carbonell, 

Jaime, "Generation from abstract meaning representation using 
tree transducers," in In Proceedings of the 2016 Conference of 

the North American Chapter of the Association for 

Computational Linguistics: Human Language Technologies, 
San Diego, California, 2016b.  

[89]  Pelja Paul, N.; Revathy, P.; Sini, G.M.; Binu, R., "Automatic 

AMR Generation for Simple Sentences Using Dependency 
Parser," Procedia Technology, vol. 24, pp. 1528-1533, 2016.  

[90]  Song, Linfeng; Peng, Xiaochang; Zhang, Yue; Wang, Zhiguo; 

Gildea, Daniel, "AMR-to-text Generation with Synchronous 

Node Replacement Grammar," in In Proceedings of the 55th 

Annual Meeting of the Association for Computational 

Linguistics (Volume 2: Short Papers), Vancouver, Canada, 
2017.  

[91]  Song, Linfeng; Zhang, Yue; Peng, Xiaochang; Wang, Zhiguo; 

Gildea, Daniel, "AMR-to-text generation as a Traveling 
Salesman Problem," in In Proceedings of the 2016 Conference 

on Empirical Methods in Natural Language Processing, 

Austin, Texas, 2016.  

[92]  Pourdamghani, Nima; Knight, Kevin; Hermjakob, Ulf, 

"Generating english from abstract meaning representations," in 

In Proceedings of the 9th International Natural Language 
Generation conference, Edinburgh, UK, 2016.  

[93]  Fan, Angela; Gardent, Claire, "Multilingual AMR-to-Text 

Generation," in The 2020 Conference on Empirical Methods in 
Natural Language Processing, Online, 2020.  

[94]  Mille, Simon; Carlini, Roberto; Burga, Alicia; Wanner, Leo , 

"FORGe at SemEval-2017 Task 9: Deep sentence generation 
based on a sequence of graph transducers," in In Proceedings of 

the 11th International Workshop on Semantic Evaluation 

(SemEval-2017), Vancouver, Canada, 2017.  

[95]  Lampouras, Gerasimos; Vlachos, Andreas, "Sheffield at 

SemEval-2017 Task 9: Transition-based language generation 

from AMR," in In Proceedings of the 11th 
InternationalWorkshop on Semantic Evaluation (SemEval-

2017), Vancouver, Canada, 2017.  

[96]  T. Schick, "Transition-Based Generation from Abstract 
Meaning Representations," Master’s thesis, 2017. 

[97]  Jin, Lisa; Gildea, Daniel, "Generalized Shortest-Paths Encoders 

for AMR-to-Text Generation," in The 28th International 

Conference on Computational Linguistics, Barcelona, Spain 

(Online), 2020.  

[98]  Ballesteros, Miguel; Bohnet, Bernd; Mille, Simon; Wanner, 

Leo, "Data-driven sentence generation with non-isomorphic 
trees," in Proceedings of the 2015 Conference of the North 

American Chapter of the Association for Computational 

Linguistics: Human Language Technologies, Denver, 
Colorado, 2015.  

[99]  May, Jonathan; Priyadarshi, Jay, "Semeval-2017 task 9: 

Abstract meaning representation parsing and generation," in In 
Proceedings of the 11th International Workshop on Semantic 

Evaluation (SemEval-2017), Vancouver, Canada, 2017.  

[100]  Knight, Kevin; Badarau, Bianca; Baranescu, Laura; Bonial, 
Claire; Bardocz, Madalina; Griffitt, Kira; Hermjakob, Ulf; 

Marcu, Daniel; Palmer, Martha; O'Gorman, Tim; Schneider, 

Nathan, "Abstract Meaning Representation (AMR) Annotation 
Release 3.0," Linguistic Data Consortium, Philadelphia, 2020. 

[101]  Zettlemoyer, Luke S.; Collins, Michael, "Learning to Map 

Sentences to Logical Form: Structured Classification with 
Probabilistic Categorial Grammars," in In UAI ’05, 

Proceedings of the 21st Conference in Uncertainty in Artificial 

Intelligence, 2005.  

[102]  Papineni, Kishore; Roukos, Salim; Ward, Todd; Zhu, Wei-Jing, 

"Bleu: a Method for Automatic Evaluation of Machine 

Translation," in The 40th Annual Meeting of the Association for 
Computational Linguistics, Philadelphia, Pennsylvania, USA, 

2002.  

[103]  Allen, James F.; Swift, Mary; Beaumont, Will De, "Deep 
semantic analysis of text," in In Proceedings of the 2008 

Conference on Semantics in Text Processing, 2008.  

[104]  Dridan, Rebecca; Oepen, Stephan, "Parser Evaluation using 

Elementary Dependency Matching," in In Proceedings of the 

12th International Conference on Parsing Technologies, 

Dublin, Ireland, 2011.  

[105]  Opitz, Juri; Parcalabescu, Letitia; Frank, Anette, "AMR 

Similarity Metrics from Principles," Transactions of the 

Association for Computational Linguistics, vol. 8, p. 522–538, 
2020.  

[106]  van Noord, Rik; Bos, Johan, "Neural semantic parsing by 

character-based translation: Experiments with abstract meaning 
representations," arXiv:1705.09980, 2017b.  

[107]  Song, Li; Dai, Yuling; Liu, Yihuan; Li, Bin; Qu, Weiguang, 

"Construct a Sense-Frame Aligned Predicate Lexicon for 
Chinese AMR Corpus," in The 12th Language Resources and 

Evaluation Conference, Marseille, France, 2020.  

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

c.
kn

tu
.a

c.
ir

 o
n 

20
25

-0
8-

30
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            31 / 31

http://joc.kntu.ac.ir/article-1-1044-en.html
http://www.tcpdf.org

