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Abstract—A linear matrix inequality (LMI)-based
algorithm is developed to design a robust state-feedback
controller using integral quadratic constraints (IQCs) for
an uncertain linear parameter varying system (LPVS). The
uncertain LPVS is described by an interconnection of a
nominal LPVS which is solely dependent on the measurable
parameters and a block-structured uncertainty. The 1QC
approach is implemented to model the input/output
behavior of the uncertainties. In general, the robust
synthesis method and the IQC stability analysis for the
uncertain LPVS lead to a non-convex problem and are
solved by the iterative algorithms. However, in the proposed
method, the problem is converted into a convex problem.
Therefore, the LPV synthesis for the nominal LPVS and the
IQC analysis for handling uncertainties are performed
simultaneously. Consequently, without any constraints on
nominal system matrices, the proposed method might
achieve a better performance and less computational
burden. Furthermore, the object is to minimize the I,-gain,
H,, control, when the closed-loop asymptotical stability is
also guaranteed. The performance and effectiveness of the
proposed method are demonstrated based on two examples.

Keywords: gain-scheduled controller, integral quadratic
constraints, polytopic system, uncertain linear parameter
varying systems.

I.INTRODUCTION
PVS are a class of linear systems whose system
matrices depend on time-varying parameters and are
described as hominal or uncertain systems by considering
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the measurability of the parameters [1],[2]. In most
practical systems, some parameters cannot be measured
or measurement is not cost-effective for any reason.
Consequently, they should be considered as an uncertain
LPVS [3]. The control of an uncertain LPVS is still a
challenging problem in control theory because both
robust stability and desired performance must be
guaranteed simultaneously. In [4], a general framework
for the uncertain LPVS has been proposed in order to
design a full order gain-scheduling controller based on
the linear fractional transformation (LFT) where the
uncertain LPVS is decomposed into a known linear time-
invariant system with a block-structured uncertainty as a
standard LFT interconnection. The method suggested in
[4] has several limitations: a) the system should be
converted into a general LFT representation; b) the
proposed algorithm will be conservative because the
parameters and uncertainties are assumed as an
uncertainty in the design procedure. However, in this
paper using the concept of 1QC, and considering the H,,
performance proposes a gain-scheduled controller in
order to reduce conservatism in which measurable
parameters will be entered in the controller structure as
shown in Fig. 1. Fig. 1 illustrates the synthesis problem
of the gain-scheduled H,, controller for the uncertain
LPVS to obtain parameter-dependent K(8,(t)), where
6,(t) is measurable, so that the closed-loop stability is
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satisfied for all 6,(t) and 4, while the induced [,-gain
from the noise input d(t) to the controlled output e(t) is
minimized [4].

d(t) —>

—>el(r)

G(4.00))

“(F)I:K(Hl(l)) jy(f)

00)=[0,¢) 6,0)]
Fig. 1. Synthesis interconnection for uncertain LPVSs in which 6, (t)
and A are the unmeasurable parameter and the model uncertainty,
respectively.

In recent years, the H,, controller synthesis for uncertain
LPVS has been considered by the 1QC concept. The 1QC
approaches describe input/output behavior of the
uncertainties (for example parametric and dynamic
uncertainties, nonlinear components such as delay and
dead-zone in [5]) and can be expressed in time and
frequency domains [6]. Also, it provides a general
framework for robust synthesis and performance analysis
of an uncertain system [7]-[10]. As noted in [3], a hard
IQC that its integral constraints are valid over a finite-
time interval with the time domain interpretation should
be applied to obtain gain-scheduled controller for the
uncertain LPVSs because they do not have a valid
frequency response. By using the 1QC, the controller is
given by iteration of two steps [11]-[16]; while in
general, this problem leads to a non-convex problem [3].
First the design step, in this step a gain-scheduled
controller for the nominal LPVS (no uncertainty and no
unmeasurable parameters) is designed based on the
algorithm proposed in [17]-[21]. Second the analysis
step, here the robust stability and performance are
investigated for a designed controller in the previous step
by the IQC theorem suggested in [22]. These two steps
can also be done by heuristic methods. For instance, an
alternative algorithm has been proposed in [2] which is
similar to the well-known DK-iteration for p synthesis
[23] to follow the iterations of these two steps. The
iterative methods given in [11]-[16] have advantages and
disadvantages in comparison with the LFT based
technique in [4]: a) The iterative methods can achieve
less conservative results; because all the parameters are
assumed to be uncertain in LFT techniques. b) In the
iterative methods, controller design and robust stability
are done in two steps; but in the LFT method, these done
simultaneously. ¢) LFT methods use parameters and
therefore, the controller will be in gain-scheduled form;
in which an LTI controller is given in iterative methods.
Furthermore, both methods can be used to design both
state feedback and output feedback controllers.

In this paper, an LMI-based method is proposed to design
a gain-based H,, controller using IQC for an uncertain
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polytopic LPVS. The proposed method has advantages
and disadvantages compared to previous methods: a)
Both LPV controller design and robust stability analysis
are considered simultaneously. However, the methods
shown in [11]-[16] use two steps and thus, increase
conservativeness. b) The proposed method might achieve
a better performance (less conservative results) with less
computational burden in comparison with the suggested
methods in [3], [4] because only the unmeasurable
parameters are defined as uncertainty. c) In the algorithm
presented in [11]-[16], the design problem leads to a non-
convex problem, but in this paper, a change variable is
defined to transform the non-convex problem into a
convex problem. However, the range of parameters is
assumed to be polytopic, which is a limitation. d) By
assuming the state variables are available, the LMI-based
algorithm is proposed without any constraints on nominal
system matrices to derive the robust gain-scheduling
controller, which is the main novelty of this paper. €) As
an extension of the main novelty, a gain-scheduled
controller is proposed to guarantee the maximum
stability margin against a class of uncertainties. In
addition, the fixed state-feedback controllers in every
vertex of available parameters will be calculated as off-
line, even though they are interpolated in real-time by the
measurable parameters.

The paper is organized as follows: Notation and
background of both IQC concept and robustness analysis
of uncertain LPVSs using 1QCs are described in Section
Il. The LMI-based algorithm for designing the robust
state-feedback controller is introduced in Section IlI.
Simulation results with two numerical examples are
presented in Section V. Lastly, Section VI draws the
conclusion.

11.BACKGROUND

A. Notation

L,. indicates an extended space of vector-valued
locally square integrable on finite intervals (i.e. on all
intervals[0 T],T > 0), whereas L, c L,, is a signal
subspace with limited energy. In symmetric matrices, the
symbol () shows a term which must be substituted by
symmetry. I, diag(...), and He(F) indicate the identity
matrix with the appropriate dimension, a block diagonal
matrix, and F + FT, respectively.

B. Integral Quadratic Constraints

Fig. 2 shows the uncertain LPVS where T is the
nominal LPVS and 4 is a bounded casual operator
relating v(t) and w(t). The perturbation A can describe
a wide variety of nonlinear elements and uncertainties,
e.g. saturation, delay and norm-bounded uncertainties.
The signals v(t) € L¥2[00) and w(t) € L’;”g[o )
satisfy the frequency domain 1QC with a measurable
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hermitian matrix I1(jw) called IQC multiplier, if:
R e
where V(jw), W (jw) are the Fourier transformations of
v(t), w(t) respectively. The frequency domain
inequality (1) is also represented in time domain form via
a non-unique factorization I1(jw) = Y*(jw) M Y(jw)
referred by a pair (1, M) in which M is a constant matrix
and v is a stable system with v(t), w(t) as inputs [6].
The perturbation A satisfies the time domain IQC with
(i, M) showed in Fig. 3, if:
T

fo AT M) dt > 0 )

where z(t) is the output of i with zero initial conditions.
Also, the matrix M can be partitioned as:

m, I
M:[*“ H;Z]'H11>0'H22<0

; ©)
LU
T, £,(1)
Fig. 2. 1QC feedback interconnection
(N ()
V(i) —> A LWU)

Fig. 3. Graphical time domain 1QC

Time domain inequality (2) is called the hard IQC. In
contrast, if this inequality is held for T = oo it is referred
as the soft IQC. The time domain and hard 1QCs are used
in this paper because the LPVSs do not have a valid
frequency domain response and hence the dissipation
inequalities will be used to obtain sufficient stability
conditions [22].

C. Robustness Analysis of Uncertain LPVSs Using
IQCs
In this section, the robustness analysis of the uncertain
LPVS is given in which the uncertainties and
unmeasurable parameters are defined by 1QCs. Fig. 4
shows the nominal LPVS T and the perturbation A that
satisfies the time domain IQC (i, M), in which the state-
space realization is given by:
() = A (6(0))x() + By (6(0))w(®)
+ Bya (B(t))d(t)
2(t) = C1(6(0)x(t) + D11 (6(6))w () )
+ Dlch(g(t))d(t)
e(t) = Cpey (8(0)x(E) + Dyt (8(8))W(2)
+ D22cl(9(t))d(t)
where the nominal LPVS depends on the measurable
parameters 6(t) specified as 8(t) € @ in which @ is a
polytope set. The desired performance of the closed-loop

a7

system (4) is defined the minimizing of H,
performance ||F, (T, )l = supaceye, lle(©ll2/
ld(@®)]l, for allé(t)e® and A€ IQC(yY,M), or
equivalently:

sup  |IE(T, Dl <y (5)
A€lQC(y,M),0€6

In the following, the time-varying parameter 6(t) is
indicated by 6 to shorten the notation. Theorem 1
presents the sufficient conditions for calculating the
robust performance level y.

Theorem 1: The LPVS (4) is exponentially stable and
|E, (T, Dl <y for 4 € 1QC(p, M) if the symmetric
matrix P > 0 and positive scalars 1;, A,, and y are exist
such that the following inequality is feasible for all 8 €
0.

[He(PAL(8)) * =

Bl ()P 0 *

| BL.(®)P 0 —AyI

DLa(O)[[C2a(8)  D2101(8) Doyt (6)] (6)

Al lC;cl (9)-
+ —=
D;ch(e).

Cchl (9)-
+ 2, [Dfm(e) M[C,(0) D114(0) Dipa(8)] <0

D;"ZCZ(H)_
Proof: The proof is based on the dissipation inequality by
defining the storage function V(t) = xT(¢t)Px(t) = 0.
By multiplying both sides of equation (6) by
[xT (), wT (t),d" (t) ] and its transpose respectively, the
inequality (6) will be:

He(x"(£) P Aq(8)x(t) + x"(¢) PB.(6) d(t)) 0

+A, v teT(t)e(t) — AydT (£)d(t) + 2,zT (t)Mz(t) < 0

or equivalently:

V() + A4y~ e" (De(d) 8
= ydT()d(t) + 4, zT (t)Mz(t) < 0 (8)

where V(t) = xT(t)P x(t) + xT(t)PxT(t). Integrating
equation (8) over the interval [0, T] with x(0) = 0 results
in:

v+ a7 |

0

T T
eT(t)e(t)dt—llyf dT(t)d(t) dt
0

©)

T
+ Azf zT()Mz(t) dt < 0
0

V(T) =0 and fOT zT(t)Mz(t) dt > 0 imply that above
inequality holds if:
T

T
f e'(t)e(t)dt < yzf d"(t)d(t) de (10)
0 0
forall T = 0 or equivalently:
_ lle®ll,
Tl =acom, <7 ()

Therefore, the proof is done. m

Theorem 1 illustrates an extension of the bounded real
lemma (BRL) in which the scalar parameters 4, and A,
are degrees of freedom. Moreover, if 4, isselectedas 1/y
or 1, the used BRL in references [22] and [24] will be
resulted, respectively. Two details should be considered
in theorem 1. First, the inequality (6) leads to an infinite
collection of inequalities because it is parameter-
dependent that must be satisfied for 8 € . Converting
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the infinite inequalities into the finite number of
conditions can be done by using the gridding [17], [19]
or the polytopic methods [25], [26]. In the gridding
technique, the parameter set is gridded to the finite
number of points and then the inequalities are checked at
these points (no all parameters); however, it can be
employed for any form of the parameter set. Hence, these
methods satisfy the local stability and performance.
Nevertheless, the polytopic technique which involves a
convex parameter set guarantees both the global stability
and performance for all 6 € @. The second detail is that
the Lyapunov matrix P can be assumed parameter-
dependent. In this paper, the polytopic method has been
employed and hence, the constant matrix P is also used
and the following definition will be required.

Definition 1 [27], [28]: If the parameters change in a

polytope set can be obtained in every time by:
6 €0 :=Co{N;,N,,...,N,} = Yl a; N;, Y a; = 1, (12)
a; =0

where N; is the ith vertex value of the polytope set. Also,
the LPVS (4) is polytopic if the parameters change in a
polytope and the system matrices can be derived by:

() beio)eeolle 5)e=r2r)

(Ai Bi) — (A(Ni) B(N;)
G Dy C(N;) D(N)
I11.ROBUST STATE-FEEDBACK CONTROLLER SYNTHESIS

In this section, first, the problem formulation that
considers the open-loop system, design objective, and
problem assumptions are presented. Then, an LMI-based
approach is proved to find a gain-scheduled controller
that guarantees the H,, performance and asymptotically
stability for the desired uncertain LPVS.

Joco &

A. Problem Formulation

The robust synthesis problem is to design an LPV
controller, K(6) for the uncertain LPVS, G with both
noise w(t) and perturbation 4 which is shown in Fig. 5,
considered an open-loop system described by the
following state-space realization.

() = A (O)x@) + B, (Ow(t) + B, (0)d(t)
+B (0) u(t)
z(t) = €,(0)x(t) + Dy, (O)w (D) + D1, (8)d () (14)
+D,(0) u(t)
e(t) = C,(0)x(t) + Dyy (O)w(2) + Do, (0)d(6)
+ D, (6) u(t)
y(£) = x(¢)
where A € R, D, € R94*™ D,, € Ri*fd D, €
RYe*fw_The system matrices and the parameter 6 in (14)

belong to the polytope set or:
= [9_ A (9)_ By (9)' B, (9)' 3(9), (o (e)r D11(9)

D12(6)
- (15)
/Ca(6),D51(0),D,2(6),De(0)] = ). [0, A, By B,

By, €14, D114y D1i, Cai Doy, Dzzi'Deil]_lezZl a;=10a,20
Therefore, from definition 1 the system G will be a
polytopic system. The main objective of this work is to
find a gain-scheduled controller
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u®) =K@ y®) =X, 2 Ky, Yimgar=1a,20 (16)
where K;,Vi=1,..,r are obtained from off-line
analysis, such that the closed-loop system is
asymptotically stable by the consideration of disturbance
A and also the H, performance with [,-gain y is

guaranteed, i.e.,

sup [|IF,(FL(G,K), Dl <y
A€IQC(y,M),0€6

17
N e 10)
A e
wi(t) » >V (1)
dy— G —>e(D)
u(t) —> >y (1)

- K r—

Fig. 5. Open loop system G, a perturbation 4, and the LPV
controller K

Moreover, the following assumption and lemma will be
used in the next sections.
Assumption 1: The perturbation 4 is a bounded casual
operator. Furthermore, the stable system ¥ (jw) selects
an identity system, that is:

2(t) = [611(0) D1, (8) D121(9) D, 1(9)]

I
x[xT(t) wr(®) d"() M@] (18)
where C;,(0) € Rz*",
Lemma 1 (Schur complement) [29]:F has an affine
dependency in terms of x as follows:
F(x) = (F11(x) F12(x)>

T\R(x)  Fpp(x)
<0

where F;; (x) and F,, (x) are the square matrices. F (x) is
negative definite if and only if:

(19)

Fi(x) <0
)~ FalF 1) <0 (20)
or:
{Fzz(x) <0 (21)
Fi1(x) = Fip(0)[Fop(0)] 7' Fpq (x) < 0

Remark 1: Because the final gain-scheduled controller is
interpolated employing all of the measurable parameters,
if a number of parameters are not measurable, they
should be embedded in the perturbation A. In practice
point of view, this issue will be a key point for designing
a robust controller. Consequently, the proposed
algorithm can also be applied when the unmeasurable
parameters have appeared in the linear parameter varying
model. Furthermore, in order to obtain a simpler
controller, some available parameters can be defined as a
perturbation A. By modeling the LPVS as an uncertain
LTI system, this idea will be perfect if the desired closed-
loop performance is achievable.
IV.MAIN RESULTS

In this section, before the main results are given, the
time-domain 1QCs (y,M) should be determined.
Assumption 1 defines i, and the matrix M should be
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chosen by considering the type of disturbance 4 listed in
[5]. In the following, we assume that the matrix M is
known and partitioned as equation (3).

Theorem 2: Consider the uncertain LPVS (14) in which
the 1QC matrices, i and M are defined by an identity
system and partitioned as (3), respectively. For known
scalar parameter A,, if the matrices L;,Vi=1,..,r
and Q = QT > 0, and a scalar y? are exist such that:

®; <0 ,i=12,..,r
0ij+9;; <0 JA<j=12,..,1 (22)

where
[ He(A;Q + BiL;)
BY, + (11,D7(C11:Q + DzliLj)
BT,
21
C11:Q + Dyl
[ C,iQ + Dol
*

* *
He(Dyy;M5,1) + 1" M5,1 * * *
DY,yil11p1 -yl * *
Dy14i D121 _171’1_1 *
Dyy; D33 0 _IJ

[T a] o, [

2l I

Then, the gain-scheduled controller,
T T

K= ZaiKi = Zai L;Q™ (24)

guarantees both the asymptotical stability and
1E,(T, Dl <y,forall 6 € @and 4 € IQC (Y, M).
Proof: From theorem 1, the robust and asymptotic
stabilities for the closed-loop system (4) are satisfied if
inequality (6) is guaranteed for all 8 € @ and 4 €
1QC(yY,M). By multiplying both sides of (6) by
diag( P~1,1,1) and its transpose respectively, and then
defining A, = y and Q = P71, this inequality will be as
follows:

Pij =

BT.(6) 0 *
B;rcl (9) 0 _}/21

He(Aq(0)Q) =+« }

Q CzTcl (9)
D31a(0) ] DIGa(0IQ  Dy1(6)  Dy2a(6)] (25)
D3 (8)

[QCfcz Q]
+ 4,

+

Di1a(8)
D{zcl(g)

M[C,a(0)Q  D11a(6)  Dizai(6)]

<0

By using assumption 1 and schur complement of (25)
related to the identity matrix I, equation (25) is satisfied
if:

He(A4(6)Q) * -
Bi.(0) 0 * ok (26)
B3(6) 0 -y +A<0
C2a(0)Q D31 (8) Dypey(8) I
where
A= [C11cz(9)Q Di1110(8)  Di214(6) O]T [17{1 H{Z]
0 1 0 0 * I,
x [C11c10(9)Q D111[cz ()] D121(c)1(9) g] (27)
My, i) _ I, I,
[ * Héz] B /12[ * sz]

In (26), A can also be shown as:
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A =[C11(0)Q Di11c1(0) Diz1(0) 0]7.”1’1
X [C11(8)Q D11151(9)0D121cl(0) 0]

+ | @Cha@®m,D"
0
He(D]114(O)11,1) + 1" MI5,]  + %
Dl1a(O)1,1 0 x
0 0 0
Now, by replacing (28) in (26), inequality (26) is
equivalent to:

He(A4(0)Q) *
BT,(8) + (QCl(0)11;,1)"  He(D]y,4(6)MI,1) + 1711 (29)
Bzrcz(@ D1 ()51
*]+A11<0
-1
where
_ [€11a(0)Q  D111(8) Di31c(0) ", 0
m=[E00 pee peaw) Lot 1) (30

X [Cllcl(e)Q Dlllcl(g) D1215l(9)
CZCZ(G)Q Dzlcl(e) D22£l(9)
By schur complement of (29) related to diag (1134, 1),
this inequality is guaranteed if:

[ He(A,(6)Q) He(DT, o, + ITI1,
|Blaa(®) + @Cla®) ;D" Brnal )(;)ZH), .
121cl 12

BT (0
| e (9) Di1ra(6) (31
C11a(0)Q Dy1y(6)
|~ CZL‘I(H)Q e
* * )
* * *
-y * * <0
Di21a(6) _171’1_1 *
D3y1(6) 0 =1

On the other hand, the closed-loop system will be as

follows where the controller is defined as (16).
Ay(0) =A(0) +B(OIK(P)
C11cl(9) = C11(9) + Dz1(9)K(9)
C2a(8) = C,(6) + D ()K(6) (32)
Blcl(g) :Bl(e) !3251(9) 232(9)
D111cl(9) = D111(9)/D121cl(9) = D121(9)
D311(8) = D31(0) ,D32,(0) = D5,(0)
From (32) and (31), the asymptotical stability and
[|E,(T, 4|l <y are guaranteed if the condition (33) is

held for all 6 € 6.

He(A(0)Q + B(0)K(6)Q)
B (6) + (I1;,1)"(C11(6)Q + D, (8)K(6)Q)
B3 (6)
C11(0)Q + D51 (8)K(6)Q
CGOQ+DOKOR | (33)
He(D11(0)IT3,1) + 1" M3, 1 * * *
DL, (0)I;,1 -y * *
I C)] D121(6) —171’1_1 *
D,,(0) D,,(8) 0 -1
<0

Equation (33) is a nonlinear inequality related to the
matrices K (6) and Q. For solving this problem we need
to define the change variable.

L(®) =K(0)Q (34)

By using (34), the inequality (33) is converted into a
linear inequality by considering the matrices K (6) and Q
shown in equation (35).
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[ He(A(6)Q +B(0)L(6))
BI(6) + (11,7 (€11(0)Q + D, ()L(6))
B3 (6)
I C11(6)Q + D, ()L(6)
C,(8)Q + De(G)f(B) i i (35)
He(D{11(0)113,1) + 1" 3,1 * * *
DI, (6)113,1 -y * *
D111(0) D121(0) _nhﬂ *
D;1(6) Dp0) 0 )
<0
From system matrices (15) and defining
LO) = Y ali, Y @ =1az0 (36)

i.e., L(O) is r’JBIytopi'g, the inequality (35) can be
represented as

Za (pu+ZZalaj (pij + ;i) = ZZulajer (37)

i=1 i<j i=1 j=1
<0

where ¢;; has been shown in(23). The LMIs (37) are
guaranteed if (22) is feasible.m

Remark 2: The proposed technique in theorem 2 uses a
simple procedure to convert the inequality (37) into a set
of LMIs (22). It should be noted that this technique is also
used in [25], [30].

Remark 3: In theorem 2, with respect to the scalar
parameter A, which is the degree of freedom, the
inequalities will be nonlinear. Therefore, this parameter
should be known before solving the LMIs (22). This
parameter can be selected by optimization methods such
as the Genetic algorithm (GA). Using this algorithm, for
each fixed A,, the given LMIs in theorem 2 are solved
and finally A, is determined when the performance index
y is minimized.

Theorem 2 proposes an LMI condition to calculate a
gain-scheduled controller where the time-domain 1QC
(3, M) known. If the objective is to design the gain-
scheduled controller with respect to A4, in order to
maximize the stability margin, this theorem should be
extended to solve the problem that given in theorem 3. In
this case, the disturbance 4 with ||4]| < b is assumed
for simplicity. The design objective is to calculate a gain-
scheduled controller to achieve both the minimum robust
gain y and the maximum value of b, i.e., maximum
stability margin.

Theorem 3: Consider the uncertain LPVS (14) where the
IQC matrix v is defined as an identity system. If the
matrices L;,vi=1,2,..,r and Q=0T >0, and
minimum scalar parameters y2 and a,, are exist such that
the following inequalities are feasible:

®; <0 i=12,..,1 (38)
@+ ;<0 A<j=12..,1
where

[He(A Q+BL)  * * * *]
BITl -1 * * *|
BY; 0 —y? * * (39)

|
| ClliQ + DleL] D111i D121i —aAI *
l CZiQ + DeLL D21i D22i 0 —IJ

Then, the gain-scheduled controller (24) satisfies the
asymptotical stability and ||F,(F,(G,K), )|l <y for
all 8 € @ and ||4]|% < 1/ay.

Proof: In this theorem, the disturbance 4 is considered as
[l4]le < b whose the 1QC matrix M will be as follows

[5]:
M = diag(h*I,-I) (40)
By considering M from (40) and equations (35)-(36) of
theorem 2, the asymptotical stability and
|E,(F(G,K), Dl <yforall® € & and ||4]|, < b are
guaranteed if the inequality (41)is heId

Za ot Y o+ o) = 3 Sty (41)

i=1 i<j i=1 j=1

<0
where
[ He(A;Q + B;L;) *
Bl + (H{zI)T(Cth + DzliLj) =1
| BZTi D1Tz1i”1’21
C11;Q + Dyyil; Di11;
[ C5iQ + DLy Dy (42)
* * *
* * *
—}’21 *1 *
Dipyi — Lo«
b2
Dy,i 0 2 _IJ

Inequality (41) is guaranteed if (38) is satisfied where
A, and b? have been selected 1 and 1/a, respectively. So
the proof is done.m
Lemma 2: In theorems 2 and 3, if the system matrices B,
D,, and D, are constant (not parameter dependent), the
LMI conditions (22) and (38) are simplified to feasibility
in every vertex of the parameters respectively or:

@; <0 JA=12,..,r (43)
®; <0 ,i=1.2,..,r (44)
where ¢; and @; will be as follows:
He(A;Q + BL;)
B, + (111" (C14;Q + Dy Ly)
;= BL’
€11:Q + DL,
[ CpiQ + D,L; (45)
* * * *
He(D]}y; D) + 150l % * *
Dipilli,! -v? o
D1111 Doy —IIiy *
211 Dzzi 0 -
He(A Q+BL;) * * * *
[ B;rl —1 * * *l (46)
=| B 0 i x|
*

l C11:Q + DLy Duiai Diayy —aul J
C3iQ + D,L; Da1i Dy (U

Proof: Let the matrices B, D,, and D, to be constant.
Equation (37) in the proof of theorem 2 can be rewritten
as follows:
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z a; ;<0 (47)
i=1
where a; = 0. The inequality (47) is satisfied if ¢;, Vi =
1,..,r (in every vertex of the parameter box) is
guaranteed. This issue can be represented in theorem 3
either. Therefore, the proof is completed.m
V.NUMERICAL RESULTS
In this section, two examples are illustrated. In the first
example, the aim is to derive an autopilot for the pursuit
system to track the normal acceleration where the LPVS
is considered as an uncertain LTI system and then the
fixed controller is given by theorem 2. In the second one,
a gain-scheduled controller will be obtained for the
uncertain LPVS in order to satisfy the asymptotical
stability and robust performance y.
Example 1 (Autopilot design): In [31], first an linear
parameter varying description of a pursuit system has
been given at Mach 3 (M = 3) and the altitude 20000ft

by:

a(®)] _[Ze 1][a(t)

ol =i ollo)* []o® (48)

a,(t) =Ny a(t) + N5 6(t)

where a(t) is the angle of attack, g(t) is the angular
velocity, 6(t) is the deflection, a,(t) is the normal
acceleration and the system parameters Z,, Zs, My, M,
N, and Ng depend on the Mach number and the angle of
attack changing over —15 to 15 degrees. Then, by
defining

M, = M+ 6 My, = max(M,) + min(M,) (49)

2
max(M,) — min(M,
" M) ( “),|9|s1

2
where 6 is time-varying and

M, = K,M?((2.15 x 107" a?(t) — (1.95 x 107)]a(t)]  (50)
+5.1x107%)

, it has been shown that the pursuit model (48) can be
represented as Fig. 6 with the following state-space
model:

a(t) aZMa +bZ a(t)
Gl =[5, ollaw] +[51v@ sy

s

a0 =1 M mﬁg]
1 a(t)
Y(©) = |ayMgo + by 0 [ (t)] + aN w(®)
0
+|Ns|8()
0
where
a; = 2.38x1073,b, = —0.695 (52)
ay = 4.59 x 1073,by = —1.166
0 <
z(t)
w(t) » G _,a:(;)
S(t)—> —>q(1)
—>a(t)

Fig. 6. LFT interconnection of the pursuit model
The weighted robust interconnection shown in Fig. 7
has been proposed to derive the H,, autopilot where the
signals e(t) and d(t) in (14) will be as [Z,, Z,]Tand
[4,., Noise, Dist]", respectively.
Because |6| < 1, the IQC matrix M will be as follows

[5]:

M = diag(l,—I) (53)
Now, in theorem 2, by selecting:
A, = 11387 x 1075 (54)

, utilizing the Genetic algorithm and solving the
inequality (22), the following autopilot guaranties [,-gain
y = 0.376.
K =-[24346 0555 52.443] (55)

The open-loop system (51) with the autopilot (55) has
been evaluated by the step response shown in Fig. 8 when
the time-varying parameter M, will be changed as in Fig.
9. As suggested in [22], the autopilot can be also designed
by the iterative-based methods in which the state-
feedback controller can be obtained from [25]. To use
this method, in the first step by assuming 68 = 0, the SOF
controller is obtained as:

K=-[19 033 13.92] (56)
that guarantees y = 0.13 with known scalars p =
0.0011 and B = 0.0853. In the second step by
considering |6| <1, the controller (56) satisfies the
stability and performance level y = 0.86 by using the

w(t) z(t)

1/100

Noise

a.(t)
G a0
a(t)

Dist

Fig. 7. Robust H,, interconnection
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stability analysis presented in [22]. Consequently, the
nonrepetitive method proposed in theorem 2 in which the
controller and stability analysis are done simultaneously,
can result in better performance (i.e., lessy) and less
computational burden in comparison with the iterative
method in [22]. Furthermore, simulation results
illustrated in Fig. 8 imply that the closed-loop system
appropriately tracks the acceleration step profile.
Therefore, this example confirms the effectiveness of the
proposed method in presence of the unmeasurable
parameter M.

5F

i = = =Command
a_(t

Acceleration [g]

0 10 20 30 40
Time [sec]

Fig. 8.The step response using the autopilot (55)

0 5 10 15 20 25 30 35 40
Time [sec]

Fig. 9. Time-varying parameter M

Example 2 (An uncertain LPVS): Consider an uncertain
model by the following state-space realization [32]:

() = [TZ _'7;32 X(0) + md(t) 8 Yuw
e(®=1[1 0Jx(® (57)
yo =[5 Jx®
where the time-varying parameter 6 € [2,4] is
measurable, and the uncertainties n; and n, which are not
available for the feedback interconnection, are between
(0.9t0 1.1). So, the traditional methods for design of LPV
controllers cannot be applied because all of the
parameters are not measurable [27]. However, this
problem can be solved by the IQC technique. For this
purpose, by defining
m=1+4,m,=1+4,,4,, 4, € [-0.1,0.1]

w(t) = 4‘01 _A;i]x(t)+[j)1]d(t) 58)
“lo o 4 S\Z][zm) AR AGEEAGI

4, 4, 0
The state-space matrices of the open-loop system (14)
will be:

1 0 1 0
A:[—z —zJ'Bl:B:CZ[o 1]
1 0 0
(59)
C11=[8 g]:Dul:I(l)‘rCz:[O 1]
0 —4 0

with zero values for other matrices on (14). Furthermore,
the 1QC matrix M will be as (40) in which b = 0.2, and
the theorem 2 can be applied. By choosing 4, = 30.48
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via the Genetic optimization, the following controllers
will be obtained for two vertices that guaranty y = 2.61.

_ 615532 0.0006
Ky =-10 X[0.0001 5.2683 (60)
K. = 106 x [1-3954 0.0001

2 0 47064

Also, the scheduling parameters «;, Vi =1,2 are
chosen as:

max(0) — 0 o= 6 —min(9) (61)

@ = max(0) —min(0)’ 2 max(8) — min(0)

Therefore, the LPV controller (60) should be
interpolated by the scheduling parameters (61) in the
real-time, when the fixed-controllers are calculated as
off-line. This example shows that the proposed method
in theorem 2 can be applied to control of the LPVSs
where all the parameters are unavailable or cannot be
estimated for the feedback interconnection. Now, if the
goal is to define the maximum stability margin of 4,
and 4,, theorem 3 can be applied, and by solving
inequalities (38), the performance index y = 3.49 and
b =3.49 (i.e., a; = 0.0818 or ||4]|2, < 12.225) will be
obtained. For instance, the absolute of the uncertainties
4A; and 4, can change to less than 1.75. Also, the
controller can be obtained by the state-space feedback
method introduced in [32] in which system (57) is
considered as a polytopic model with the uncertainty over
its vertices. By using the suggested method in [32], eight
inequalities should be solved. Nevertheless, the proposed
method in theorem 2 needs to solve only three
inequalities which results in a less computational burden.

VI.CONCLUSION

In this paper, the LMI-based algorithm has been given
to synthesizing a robust gain-scheduled state-feedback
controller for a class of uncertain LPVS. Also, the LPV
design step and the 1QC analysis step have been
considered simultaneously to achieve a better
performance and less computational burden. The
proposed method guarantees the closed-loop
asymptotical stability when the induced [,-gain y
minimizes for all 6 € @. Finally, the proposed method
has been evaluated on two examples. In the first example,
it has been shown that this method can be applied to the
LTI system with a block uncertainty in form of the upper
LFT representation. The effectiveness of the proposed
method against the unmeasurable parameters in the
uncertain LPVS has been shown in the second example.
In these two examples, less conservatism and less
computational burden of the proposed method have been
confirmed in comparison with state-of-the-art methods.
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