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Abstract—This paper addresses the challenge of
mitigating positioning errors in Ultra-Wide Band (UWB)
networks. We propose an adapted tree approach that
compensates for error effects, leading to improved accuracy
in both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS)
environments. The ranging errors are classified into two
types, LOS and NLOS condition errors, and the adapted
tree approach starts with splitting the study based on the
presence of these conditions. The ranging error values are
studied in different distances and intervals are identified
based on the standard deviation error criterion. The
positioning results are presented and analyzed, showing
that utilizing the adapted tree leads to an average error
mitigation of about 53.4 cm in the LOS condition and about
133 cm in the NLOS condition. The results demonstrate the
effectiveness of the adapted tree approach in error
mitigation for both LOS and NLOS conditions.
Furthermore, the EKF estimation method is found to be the
most accurate estimator. Finally, the proposed approach is
applied on a moving tag, achieving an accuracy of about
20.8 cm for LOS and 24.1 cm for NLOS conditions through
the EKF method.

Keywords: Indoor Positioning Systems, Real-Time Locating
Systems, Error Mitigation, Extended Kalman Filter.

I.INTRODUCTION

HE Internet of Things (10T) has gained increasing

attention, and its potential continues to be discovered
over time. 10T is the idea of connecting objects to enable
communication among them and with users [1].
Positioning can be broadly classified into global and local
modes, with local positioning being a common use case
for 10T. Despite the numerous benefits of local
positioning, it faces various challenges, such as accuracy
and stability.

Recent approaches for solving the positioning problem
can be categorized into two different methods: vision-
based and beacon-based [2]. The latter includes various
options, such as ultrasonic ranging, optical positioning,
infrared radiation, and Radio Frequency (RF) [3]. Among
the available RF-based technologies, UWB technology
stands out due to its desirable features, including high
accuracy, resistance to noise, no interference with other
radio systems, wall penetration, and high-speed
transmission [3-5].

UWB works by using fixed and known anchor nodes to
signal with mobile objects, called tags [6]. Various
algorithms are available for UWB, including Received
Signal Strength Indication (RSSI) [7], Angle of Arrival
(AOA), and time-based algorithms such as Time of Arrival
(TOA), Time Difference of Arrival (TDOA), and Two-
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Way Ranging (TWR) [4, 8]. However, path loss is an issue

with UWB, and the RSSI algorithm's effectiveness may

decrease due to signal strength reduction during travel.

Thus, the time-based algorithms would be the best option

for higher accuracy [4, 7]. In [9], a UWB error map-

building method is proposed along with an adapted error
map-based particle filter to enhance the accuracy of UWB
positioning.

The TWR algorithm is preferred among other available
technologies due to the challenges in TOA/TDOA clock
synchronization [7, 8]. TWR estimates the Time of Flight
(TOF) of the signal and does not require clock
synchronization, thereby using periods instead of
timestamps [10, 11].

However, one of the main challenges in UWB systems
is the requirement for LOS path between nodes, which can
be obstructed in indoor scenarios, particularly in dense
multipath propagation environments. In the absence of the
LOS path, NLOS paths, such as penetrated, reflected,
diffracted, or scattered paths [12], can be used by the
transmitted signal from a tag to reach the anchors. To
minimize inaccuracies caused by these factors, various
works have been proposed in [10, 12-14].

For example, a self-training method is introduced in
[15], which leverages integrating maps, inertial sensors,
and UWB measurements to mitigate errors. In [16],
tracking motion dynamics and visibility conditions of the
UWB antennas are jointly used to mitigate positioning
errors. Additionally, a through-the-wall ranging model is
developed in [17] to mitigate ranging errors, and a novel
algorithm is proposed in [18, 19] for mixed LOS-NLOS
conditions.

Machine learning techniques are also effective in
mitigating NLOS errors [20-24], such as the semi-
supervised learning approach proposed in [21] that uses
self-training. Furthermore, deep learning and graph
optimization techniques are utilized in [25, 26] to achieve
ranging error mitigation.

After obtaining the required data from the signaling
process for locating the target object, the positioning
system needs mathematical processes to determine the
target's position. Least-Squares (LS) [27, 28] and
Extended Kalman Filter (EKF) [29] are two common
methods used for estimating the position. LS is described
in detail in [30]. This paper provides a comprehensive
explanation of TWR algorithms, LS, and EKF methods in
Part 11, while the adapted tree approach and its description
are presented in Part I11. Part IV presents the results of
applying the proposed approach, and finally, Part V
concludes the paper.

The highlights of the paper compared to the existing
literature are as follows:

I.  Our study proposes a novel approach for mitigating
ranging errors in UWB-based positioning systems
using an adapted tree approach based on practical
distance measurements.
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Il. The adapted tree approach is shown to significantly
improve ranging accuracy, particularly in the
presence of NLOS conditions, with an average error
reduction of about 133 cm using the EKF estimation
method.

. Our approach is effective for both static and moving
tags, demonstrating an accuracy of about 20.8 cm in
LOS conditions and 24.1 cm in NLOS conditions
through the EKF method.

IV.The study highlights the importance of considering
LOS and NLOS conditions in UWB-based
positioning systems and provides insights into the
behavior of ranging errors in specific distance
intervals.

V. Our findings have practical implications for various
applications such as indoor localization, asset
tracking, and unmanned aerial vehicle navigation.

I1.PRELIMINARIES

Wireless signal-based positioning methodologies are
typically categorized into ranging-based and non-ranging-
based methods. The UWB positioning approach
commonly employs a ranging-based algorithm,
characterized by two sequential steps. The initial step
involves the measurement of distance information,
followed by the subsequent step wherein the positional
coordinates are calculated utilizing the acquired distance
information. TOF ranging emerges as a prevalent
technique for measuring the distance between two nodes.
In Section A, we delve into an examination of different
TWR algorithms, elucidating their capacity to provide
accurate TOF values. Meanwhile, Section B is dedicated
to an extensive exposition of Position Estimation Methods
derived from the measured distance information.

A. General study of TWR algorithms

TOF ranging algorithms play a crucial role in
localization and tracking systems. TWR is one such
algorithm that has gained prominence due to its capability
to perform ranging without requiring the cores of modules
to be synchronized. TWR can be classified into four
methods [31], Single-Sided TWR (SS-TWR), Symmetric-
Double-Sided TWR (SDS-TWR), Alternative-Double-
Sided TWR (AItDS-TWR), and Asymmetric Double-
Sided TWR (ADS-TWR).

1) Single-Sided TWR (SS-TWR):

In SS-TWR, two devices exchange signals to measure
ToF. The signal round-trip starts when device A sends a
signal at time t47,, which reaches device B at time tgg,,
after traveling for time T,r. Once device B receives the
signal, it sends back a response signal to device A with a
specific delay t,.,, 5, which is shown as follows.

treplyp = TBTx — TBRx: (D
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The signal reaches device A at time T,z,. The time
range from Ty, 10 Typ, IS called t,ounasa and its
mathematical representation is given by (2).
troundA = 2Tt0f + treplyB' (2)

The ToF, can be calculated as follows:

Ttof = E(troundA - treplyB)- 3)
2) Symmetric-Double-Sided TWR (SDS-TWR):

SDS-TWR involves additional steps as compared to SS-
TWR. After receiving the response signal from device B,
device A waits for a period of time delay t,p;,4 before
sending another signal to device B. The rest of the process
is the same as SS-TWR, and the round-trip times for
devices A and B are given by:
trounda = 2Ttof + treplyB)
trounap = 2Ttof + treplya: (4’)

To remember, t,ounaa aNd trounap are the true times at
devices A and B, respectively, in which the signal has
taken to have a round-trip.

By combining the equations in (4), the formulation for
Tyor is obtained as follows:

Ttof =

Z((troundA - treplyA) + (troundB - treplyB))' (5)

SDS-TWR takes longer than SS-TWR but has better
accuracy. lllustrations of SS-TWR and SDS-TWR are
available in Fig. 1.

DS-

TB1y

Device B

P P

0

bl

Device A
T

SS-
Fig. 1. Representation of Single- and Double-sided TWR methods.

3) Asymmetric Double-Sided TWR (ADS-TWR):

In ADS-TWR, device B does not need to send a
response signal to device A. Therefore t,..,,;, 4 is zero, and
the round-trip time for device B is given by (7), while that
for device A is given by (6). The ToF can be calculated
using equation (8).

Fig. 2 illustrates how the ADS-TWR method plays its
role.
trounaa = 2Ttor + trepiyn) (6)
troundp = ZTtof' (7)
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Ttof = 1/4. ((troundA + troundB - treplyB))- (8)

I
vice B T,
Device B I T | Ty |1, ! Tior !

- Ta
b=y

Device A
gy

=74

I

)

2
Trouna B !

Fig. 2. Representation of Asymmetric Double-sided TWR method.

4) Alternative-Double-Sided TWR (AltDS-TWR):

AItDS-TWR has the same signaling process as SDS-
TWR but uses a different mathematical approach. AltDS-
TWR approach calculates the T, ; using the multiplication
of (4) instead of their addition, as it is followed below:

trounda X trounap =
(ZTtof + treplyB) X (ZTtaf + treplyA)- (9)
Having simplified (9), the formulation for T, is
achieved as:
Ttof =
(troundA) X (troundB) - (treplyA) X (treplyB) (10)
troundA + troundB + treplyA + treplyB
TWR methods face various errors, and comparison
studies indicate that SDS-TWR and AltDS-TWR perform
better than SS-TWR and ADS-TWR. Among the two,
AItDS-TWR s superior to SDS-TWR due to better error
minimization. Therefore, AItDS-TWR is chosen for
practical tests.

B. Position estimation methods

Let Ty, represents the time of flight duration between
the Tag and each individual Anchor in the context of a
positioning system. After completing the ranging process,
multilateration is used to determine the position of the tag
relative to the distance between the tag and its surrounding
anchors. The distance, d, can be calculated as:

d = ¢ X Ty, (1D
where ¢ is the propagation velocity of electromagnetic
waves. Trilateration results in a unique position as long as
the three anchors are not in a straight line. Considering the
unknown tag located at (x,y) and the i** anchor located
at (x;,v;), the actual distance between the tag and the it"
anchor, denoted as d;, can be written as below:
di=Jx—x)2+@-y)?,i=123,.,n  (12)
presuming the existence of three anchors for
positioning, each distance establishes an equation
governing the position of the unknown tag as follows:



http://joc.kntu.ac.ir/article-1-1047-en.html

[ Downloaded from joc.kntu.ac.ir on 2025-11-29 ]

M.M. Saberi et al.: Error Mitigation in UWB-Based Positioning Systems Using an Adapted Tree Approach

d12 = (x —x1)2 + _3’1)2
dy? = (x—x)% + (v — y2)*. (13)
d32 = (x— x3)2 + —¥3)?

Let d; denote the measured distance between the
unknown tag and the i® anchor. Then, the difference
between the actual distance and the measured distance can
be written as:

filx,y) =
d; —d; =\/(x_xi)2+(y_yl‘)2_d{- (14)

1) Linear and non-linear least squares methods:

To deal with the ranging noise, we adopt the LS method
to minimize the summation value of all square errors as
below:

Fix,y) = Z(d - d? = Zﬁ (xy. (5

Let all equatlons in (13) subtract its first equation, we
— X
b, where A—[ R yl]

X3 — X1 Y3 —yil’
1x2 +y,2 —d, —(x1 +y.° _dlz)
€= [y] b= 2 _ 2 2 _ g2y
x32+y32 —d3® — (0 + 2 —dy)
which is the I|near|zed form of the LS. Thus, the Linear-
LS (LLS) solution of ¢ is
A
£=(ATA)1ATb. (16)

When the linearization is done, one measured range is
lost, which is sometimes undesirable. As an alternative,
Non-Linear Least Squares (NLLS) method is available,
which does not include the mentioned linearization step.
Newton's iterative method is a classical method for solving
nonlinear equations. The basic idea is to make the
nonlinear equations linearized and make the solution of
linear equations approach the solution of nonlinear
equations as close as possible.

Newton's iteration is used as the algorithm for
minimizing the squared errors. The Jacobian in (17) for
the set of equations is determined from partial
differentiating (14) concerning x and y. The vectors f and
r are introduced as:

Ph % R [f

can get Ag =

_2|6f1 aaixz %| f = f2 r= [;] (17)
oy 3y ~ oyl £,

Newton's iteration gives, 1411 = 7% — UEJ) " YL fier
where 1,4 iS the current position and 7 is the last
approximated position. An estimated guess of the initial
position can be obtained by using LLS. Since this is an
iterative process, the algorithm will terminate when the
difference between the k and k + 1 iteration converges to
an acceptable value.

2) Extended Kalman filter method:
The measurements in positioning are corrupted by
noise. Therefore, EKF is the proper approach for this
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application [5]. The coordinates of the 2D position of the
tag, X = [x(k) y(k)]", where k refers to the sample
time, are selected as the state variables of the filter. The
state dynamics are modeled as follows:
X = FiXg—q + Wiy, (18)
where F, denotes the state transition matrix, Wy_; =
[wy(k—1) w,(k —1)]"denotes process noise vector
with zero mean and variance E[W," W, | = @, at time k.
The equation that relates the measurements to the state
variables is Z, = h(X,) +V, where V, is random
measurement noise with variance E[V,"V,] = Ry. In
UWB positioning, the elements of the vector h(X) are
distances between the tag and neighbor anchors as follow:
V& =x)2 + (7 = y1)?
hX) = |V @ = %)+ (7 = 72)? |- (19)
V@ = x3)2 + (v = y3)?

EKF algorithm can be used on linear systems. So (19)
must be linearized for its nonlinearity. By taking the
first-order Taylor expansion at each time step, the Jacobian
matrix Hy, is obtained as follows:

H, = [ah(Xk)
X X=X

In the prediction step (estimation equations), the prior
estimated state can be expressed as:

X = FXq (21)

Here, the state vectors X, are the positions x(k) and
y(k) at sample k. The state transition matrix F in (21) is

(20)

time-invariantand is givenas F = [(1) (1)] Matrix F is the

transition matrix that predicts the next state from the
previous state, the current location of the tag is assumed to
be the previous location. Here, we define a priori
estimation error covariance P,, and a posteriori estimation
error covariance P,, which are subject to Gaussian noise:

P; = FP_FT + Q. (22)

The Kalman gain for measurement update is computed
using the linearized H, matrix, and the measurement
updates of the state and the covariance are obtained as
below:

Ky = PgHg (H P Hi + Ri)™,

£e=% +Ke (2o —n(%)),

Py = (I — KeHi) Py, A (@3
where the predicted measurement is Z, = h(X; ). Zy is
the new sample mean of the distance measurements, R, is
the corresponding sample variance, and I is the identity
matrix of order 2x2.

The filter has been initialized by setting X, and P, to
constant values. The first measurement update was
evaluated iteratively, i.e., repeating the evaluation of (21)
and (23) with the same measurement information until the
predetermined convergence criterion is met.

To address the stability concern, consider the dynamic
system (18) alongside the developed Kalman filter
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algorithms (22) and (23). Based on the research conducted
by Rief et al. [32], it is established that System (18) is
exponentially bounded in mean square and bounded with
probability one, provided certain conditions are met.
Notably, the proposed method adheres to these conditions,
which are outlined as follows:

I. There are positive real numbers f, h,p1,p2,§,7 >

0 such that the following bounds are satisfied for every
k>0:

IFll < £ 11 Hll < b, (24)
pll < P, < p2l, (25)
gl <Q,, 71 < Ry. (26)

Il. F}, is non-singular for every k > 0.

[1l. " There are positive real numbers &g, &, kg, k, >
0 such that the functions ¢ and y are bounded from
above via:

o, 2l < kg X [l — myeI?, (27)

X, DIl < ky X |l — my I, (28)

Il — myll < &, (29)

Il — mll < g (30)
I11.ADAPTED TREE APPROACH

Ranging data errors are a common occurrence, and
clock drift is one type of error that is typically encountered.
Due to real-world conditions, the clock cannot maintain a
constant rate, resulting in clock drift. Other errors include
Propagation Time Delay (PTD), Transmission Time Delay
(TTD), Receiving Time Delay (RTD), and Preamble
Accumulation Time Delay (PATD). PTD is caused by
obstacles that delay the signal from the transmitter to the
receiver, while TTD and RTD refer to the time taken by
the transmitter and the receiver to create the signal
message. Electronic components such as PCB and antenna
also contribute to TTD and RTD. PATD is a delay caused
by signal interference in a multipath situation [33].

A. Experimental methodology

The effectiveness of the adapted tree approach hinges
upon rigorous experimental testing and precise
measurement of ranging errors across varying distances
between the tag and anchor. Accurate ranging errors are
obtained through meticulous comparison of the measured
distance between a tag and anchor with the actual distance.
This disparity constitutes the ranging error, a crucial metric
in assessing the performance of positioning systems.

Two distinct types of ranging errors commonly
manifest: LOS and NLOS. LOS errors typically arise from
factors such as clock drift, TTD, and RTD, while NLOS
errors are compounded by PTD and PATD, alongside LOS
error sources. In this section, we present an elaborate
elucidation of both the experimental setup and the
deployment of the Adapted Tree Approach, aimed at
effectively mitigating ranging errors inherent in
positioning systems.
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1) Experimental setup:

The experiments were conducted using an UWB
positioning system in a controlled laboratory environment.
The UWB system comprised tags and anchors deployed
within the test area. Tags transmitted signals, while
anchors served as reference points for positioning based on
the AItDS-TWR algorithm.

To simulate LOS and NLOS conditions, obstacles were
strategically placed within the test environment. LOS
conditions were ensured when the direct line of sight
between the tag and anchor was unobstructed. To achieve
this, we utilized a football stadium, providing ample space
for unimpeded signal transmission. Conversely, NLOS
conditions were induced by introducing obstacles that
caused signal reflections and multipath effects. For this
purpose, we utilized a laboratory setting equipped with
tables, chairs, and common equipment found in typical
laboratory environments. These obstructions replicated
real-world scenarios where signal paths are obstructed,
leading to NLOS conditions.

2) Data collection and error analysis:

Ranging data was collected by measuring the distance
between tags and anchors using the UWB system. Each
measurement cycle involved multiple iterations to ensure
the reliability and accuracy of the measurements.
Additionally, to enhance the robustness of the data
collection process, two random devices were utilized to
verify the validity of the results.

Following data collection, ranging errors underwent
meticulous analysis to identify patterns and trends. This
comprehensive analysis included computing both the
mean error and standard deviation error for predefined
distance intervals. By systematically examining the
ranging errors across various distance intervals, valuable
insights into the behavior and characteristics of the
positioning system under different conditions were gained.
This rigorous error analysis served as the foundation for
evaluating the effectiveness of the adapted tree approach
in mitigating ranging errors. Fig. 3 illustrates that ranging
accuracy is significantly influenced by whether the
measurement is conducted in LOS or NLOS conditions.
To address these errors, the adapted tree approach is
initiated.

2

105 D1
05 D2
NG

05_p1
—NLOS D2

Eos

o 5 10 5 25 30

Fig. 3. Ranging Error relative to actual distance in the LOS and
NLOS conditions for two measurements in both conditions.
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B. Adapted tree approach:

The adapted tree approach was employed to mitigate
ranging errors through interval-based error correction.
Upon analyzing the ranging error values, it became evident
that errors exhibited similar behavior within specific
distance intervals, as demonstrated in Fig. 4 and Fig. 5 for
LOS and NLOS conditions, respectively. To establish
intervals, a maximum standard deviation error of 2.9 cm
was utilized as a criterion. In both figures, the blue and red
plots depict the behavior of the first and second devices,
respectively, indicating consistent operation under each
sight condition.

—Devicel
—Device2

ML A
1/7\’

Mean Ranging Error (m]

0012 30 50 70 100 160 190 225 250 285 330
Actual Distance (m]

Fig. 4. Ranging Error relative to actual distance in the LOS
condition for a couple of anchors.

—Devicel
s Device2

Mean Ranging Error [m]

iz

00 1525 60 105 160 230 320
Actual Distance (m]

Fig. 5. Ranging Error relative to actual distance in the NLOS
condition.

Intervals and their corresponding statistics are detailed
in TABLE I and TABLE Il for LOS and NLOS conditions,
respectively. Furthermore, Fig. 6 and Fig. 7, presented on
the following page, depict the data for each defined
interval in LOS and NLOS conditions, respectively.
Histograms associated with these intervals reveal a
Gaussian distribution.

By subtracting adapted error values from the
corresponding interval, notable enhancements in distance
measurements were achieved. It is worth noting that since
positioning relies on tag distances from anchors,
mitigating distance errors inherently leads to mitigating
positioning errors.
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The simplicity, operational efficiency, and practicality
of this method make it highly effective. Despite its
simplicity, the adapted tree approach proves to be a robust
and reliable solution for mitigating ranging errors in
positioning systems.

TABLE |
LOS STATISTICS OF RANGING ERRORS

Interval Mean Error Standard Deviation (std) Error
[m] [m] [m]
[0-1.2] 0.535 0.019
(1.2-2] 0.636 0.022
(2,3] 0.610 0.020
(3,5] 0.700 0.017
(5,71 0.807 0.023
(7,10] 0.985 0.016
(10,16] 1.051 0.013
(16, 19] 1.090 0.027
(19, 22.5] 1.115 0.013
(22.5, 25] 0.990 0.029
(25, 28.5] 0.765 0.025
(28.5,33] 0.589 0.029
TABLE Il

NLOS STATISTICS OF RANGING ERRORS

Interval Mean Error Standard Deviation (std) Error

[m] [m] [m]

[0-1.5] 0.589 0.020
(1.5-2.5] 0.695 0.022
(2.5,6] 0.820 0.020
(6,10.5] 0.940 0.018
(10.5,16] 1.015 0.019
(16,23] 1.105 0.016
(23, 32] 1.185 0.014

Interval = (0, 1.2]

Interval = (1.2, 3] Interval = (3,5]

Count
Count

0535
DeltaD(theory - practical)

0.636
DeltaD(theory - practical)

Interval = (7, 10]

0.7
DeltaD(theory - practical)

Interval = (10, 16]

Interval = (5,7]

Count
Count.

0.807
DeltaD(theory - practical)

Interval = (16, 19]

0.985
DeltaD(theory - practical)

Interval = (19, 22.5]

DeltaD(theory - practical)

Interval = (22.5, 25]

Count

1115
DeltaD(theory - practical)

Interval = (28.5, 33]

DeltaD(theory - practical) DeltaD(theory - practical)

Interval = (25, 28.5]

Count
N &2 o
o 8 & 8
Count

0.765 0.589
DeltaD(theory - practical) DeltaD(theory - practical)

Fig. 6. LOS intervals data histograms
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Interval = (0,1.5] Interval = (1.5,2.5] Interval = (2.5, 6]

0.589

0.695 0.82
Ranging Error (m} Ranging Error [m] Ranging Error [m]

Interval = (6, 10.5] Interval = (10.5, 16] Interval = (16, 23]

094 1015 1105
Ranging Error [m] Ranging Error [m] Ranging Error [m]

Interval = (23, 32]

1185
Ranging Error [m]

Fig. 7. NLOS intervals data histograms

IV.POSITIONING RESULTS

In this section, we provide a detailed discussion of our
positioning results. Our team conducted tests using
modular boards that incorporated an ATmega32U4-AU
micro-controller, Decawave DWM1000 module, and
ESP8266 SMT Module - ESP-12E, as illustrated in Fig. 8.

We conducted tests in both LOS and NLOS
environments at the Iran University of Science and
Technology football stadium and the Advanced
Instrumentation Laboratory of the Electrical Engineering
School, as shown in Fig. 9 and Fig. 10, respectively. Each
test utilized four modules as anchors and one module as
the tag, with the AItDS-TWR time-based algorithm used
for all tests. We utilized the LLS, NLLS, and EKF
estimators, which were introduced in Section 2, to estimate
the tag's position.

Since accurate error analysis is not feasible for the
moving tag, we conducted positioning error analysis tests
on fixed points in two dimensions, X and Y. For this
purpose, positioning experiments were carried out at six
fixed points in both LOS and NLOS conditions. In LOS
conditions, the fixed points were located at coordinates

[2,3], [4,13.5], [8,0], [0,4.95], [10.1,6.95], and [14.3,1].
Similarly, for NLOS conditions, the fixed points were
positioned at coordinates [1.45,4], [4.6,0], [4.65,2.3],
[6.65,0.48], [10.05,4.8], and [12.43,2.32].

Subsequent to data collection, positioning error analysis
was performed. The results, comparing the positioning
error with and without utilizing the adapted tree for each
estimator, are presented in TABLE Ill and TABLE 1V for
LOS and NLOS conditions respectively.

Fig. 10. NLOS condition positioning environment.

TABLE Il
POSITIONING ERRORS OF DIFFERENT METHODS IN LOS CONDITION

Actual Position [m]

Positioning Method Errors [m]

LLS NLLS EKF

X Y Simple Adapted Simple Adapted Simple Adapted

2 3 0.621 0.233 0.595 0.239 0.556 0.167

4 135 0.447 0.435 0.873 0.450 0.963 0.438

8 0 0.592 0.157 1.096 0.195 1.125 0.224

8 4.95 0.324 0.168 0.446 0.172 0.232 0.092
10.1 6.95 0.241 0.184 0.363 0.058 0.351 0.062
14.3 1 0.824 0.243 1.205 0.265 1.223 0.263
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TABLE IV

POSITIONING ERRORS OF DIFFERENT METHODS IN NLOS CONDITION

Actual Position [m]

Positioning Method Errors [m]

LLS NLLS EKF
X Y Simple Adapted Simple Adapted Simple Adapted
1.45 4 0.925 0.485 1.692 0.301 1.713 0.292
46 0 0.394 0.189 1.564 0.179 1.556 0.177
4.65 2.3 0.353 0.252 1.599 0.278 1.649 0.268
6.65 0.48 0.433 0.287 1.419 0.330 1.463 0.317
10.05 48 0.715 0.167 1.510 0.121 1.533 0.121
12.43 2.32 1.391 0.456 1.438 0.299 1.506 0.270
LLS, and NLLS methods respectively. In the NLOS
SIMPLE EKF ADAPTED EKF .= -
N ) urg T . condition, the adapted tree results in an average error
2 . reduction of about 132.9 cm, 39.5 cm, and 128.5 cm with
° . EKF, LLS, and NLLS respectively.
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Fig. 11. Positioning in LOS condition. Left: without Adapted Tree / 2 3 < & s H 2
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To further illustrate the effectiveness of the adapted tree . i »_snchor ol ) .

method, Fig. 11 and Fig. 12 show the error mitigation in
the LOS and NLOS conditions, respectively. The results
indicate that both the NLLS and EKF estimation methods
have higher accuracy than the LLS method. Furthermore,
a comparison of the accuracy of the EKF and NLLS
estimators in Fig. 13 shows that the EKF is the more
accurate estimator, despite their similar accuracy levels.

Additionally, the Root Mean Square Error (RMSE) for
the said points in LOS and NLOS conditions is visualized
in Fig. 14 and Fig. 15, providing further insights into the
performance of the adapted tree approach across different
estimators and environmental conditions.

Upon analyzing the results, it was found that utilizing
the adapted tree leads to significant error mitigation.
Specifically, in the LOS condition, the average error
reduction is 53.4 cm, 27.2 cm, and 53.2 cm with the EKF,

4 6 8 10 12 14

Fig. 12. Positioning in NLOS condition

Right: with Adapted Tree

Los

NLOS

10 12

. Left: without Adapted Tree /

SIMPLE

07 P = ADAPTED 0763

0509

s NLLS

Fig. 13. Average positioning errors for e

SIMPLE
157 = ADAPTED

0702

NLOS conditions [m].
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RMSE for fixed point x=8.0 and y=4.95
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Fig. 14. RMSE analysis for fixed points in LOS conditions,
comparing positioning error with and without utilizing the adapted
tree approach for each estimator. 'SIMPLE' prefix before the
estimators denotes no use of adapted tree approach, while
'ADAPTED' prefix signifies its utilization.
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Fig. 15. RMSE analysis for fixed points in NLOS conditions,
comparing positioning error with and without utilizing the adapted
tree approach for each estimator. 'SIMPLE' prefix before the

7

estimators denotes no use of adapted tree approach, while
'ADAPTED' prefix signifies its utilization.

In addition, Fig. 16 and Fig. 17 demonstrate the
application of our proposed approach on a moving tag,
showing its effectiveness in both LOS and NLOS
conditions. Our approach has achieved an accuracy of
about 20.8 cm for LOS and 24.1 cm for NLOS conditions
through the EKF method. In a broader context, when
compared to existing literature, our method exhibits
notable accuracy. The precision achieved in this paper
surpasses that of [34] by 66.8% and exceeds [35] by
16.7%, underscoring the superior performance of our
proposed approach.

—— Simple Estimated Path
—— Adapted Estimated Path
10 ~=- Actual Path

®  Anchors

LLS

—— Simple Estimated Path
—— Adapted Estimated Path
10 === Actual Path

®  Anchors

NLLS

— Simple Estimated Path
—— Adapted Estimated Path
=== Actual Path

® Anchors

Fig. 16. Positioning of a moving object in LOS conditions. Blue dots
represent anchor locations, and the black dashed line shows the true
trajectory. The green path is the trajectory estimated with the EKF
combined with the proposed method (adapted tree), while the red path
is solely estimated by EKF without the proposed method. 'Simple'
prefix before the estimated path denotes no use of adapted tree
approach, while 'Adapted' prefix signifies its utilization.
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—— Simple Estimated Path
—— Adapted Estimated Path
-- ath

—— Simple Estimated Path
sti

—— simple Estimated Path
—— Adapted Estimated Path

Fig. 17. Positioning of a moving object in NLOS conditions. Blue dots
represent anchor locations, and the black dashed line shows the true
trajectory. The green path is the trajectory estimated with the EKF
combined with the proposed method (adapted tree), while the red path
is solely estimated by EKF without the proposed method. 'Simple’
prefix before the estimated path denotes no use of adapted tree
approach, while 'Adapted’ prefix signifies its utilization.

V.CONCLUSION

This paper has investigated the challenge of error
mitigation in UWB-based positioning systems, offering a
novel approach grounded in practical distance
measurements. Our findings underscore the inevitable
nature of ranging errors within such systems, necessitating
robust mitigation strategies.

The introduced adapted tree approach serves as a
promising solution to address these errors, leveraging
insights gleaned from rigorous experimentation. Our
analysis reveals a profound dependency of ranging
accuracy on the presence of LOS and NLOS conditions,
highlighting the critical importance of environmental
factors.

Through comprehensive testing, we have demonstrated
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the significant efficacy of the adapted tree approach in
mitigating ranging errors. Notably, our results indicate an
average error reduction of approximately 53.4 cm in LOS
conditions and about 133 cm in NLOS conditions, with the
EKF estimation method exhibiting superior accuracy.
Moreover, our approach proves effective even in scenarios
involving a moving tag, showcasing its versatility and
applicability across diverse conditions. The achieved
accuracy levels in both LOS and NLOS conditions surpass
existing benchmarks in the literature, emphasizing the
practical significance of our proposed method.
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