Volume 12, Issue 2 (Journal of Control, V.12, N.2 Summer 2018)                   JoC 2018, 12(2): 53-66 | Back to browse issues page

DOI: 10.29252/joc.12.2.53

XML Persian Abstract Print

1- University of Birjand
Abstract:   (2647 Views)

A dual stator winding induction motor (DSWIM) is a brushless squirrel-cage induction motor that contains a stator with two isolated three-phase windings wound with dissimilar number of poles. Generally, each stator winding is fed by an independent three-phase inverter. A direct vector control is a suitable method for controlling the DSWIM drive. In the vector control method, the estimation of the rotor flux is difficult at low speeds. In this paper, a direct vector control is proposed based on the rotor flux compensation. The achievement of this proposed control method is to maintain the standard performance of the motor drive at low speeds to reduce the power loss of the inverter unit compared to the conventional methods. In the proposed control method, the rotor flux is compensated with a PI controller. The proposed control scheme is based on the independent control of the rotor flux and the electromagnetic torque in the direct and orthogonal axises (d and q-axis), respectively. The rotor flux is compensated via reformed of the reference rotor flux. Also in this paper, for the first time, the reduction in number of switching elements of the inverter unit for the DSWIM drive can be achieved by utilizing five-leg and nine-switch power electronic converters. The advantages of using these proposed structures in the DSWIM drive are the reduction of the capital cost and also the reduction of power loss in the inverter unit.

Full-Text [PDF 802 kb]   (1415 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2017/01/15 | Accepted: 2018/02/23 | Published: 2018/10/3

1. [1] Singh. G. K., 2002, "Multi-Phase Induction Machine Drive Research—A Survey", ElectricPower Systems Research, vol. 61, no. 2, pp. 139–147. [DOI:10.1016/S0378-7796(02)00007-X]
2. [2] خسروجردی. م. ج. ورضایی. ح.، 1391، "یک رویکرد فعال جهت طراحی سیستم کنترل تحمل پذیر خطا مبتنی بر مدل برای موتورهای القایی سه فاز"، مجله کنترل، سال 6، شماره 2 ، صفحه-ی 15-9.
3. [3] Abdi. E., McMahon. R. A., Tatlow. M. R., and Tavner. P. J., 2013, "Design and Performance Analysis of a 6 MW Medium-Speed Brushless DFIG", In 2nd IET Renewable Power Generation Conference, pp. 1-4. [DOI:10.1049/cp.2013.1850]
4. [4] Roberts. P. C., 2005, "A Study of Brushless Doubly-Fed (Induction) Machines", PhD dissertation, University of Cambridge.
5. [5] Lipo T. A. and Mu-oz A. R., 2000, "Dual Stator Winding Induction Machine Drive", IEEE Trans. Ind. Appl., vol. 36, no. 5, pp. 1369–1379. [DOI:10.1109/28.871286]
6. [6] Guerrero. J. M. and Ojo. O., 2009, "Total Airgap Flux Minimization in Dual Stator Winding Induction Machines", IEEE Trans. Power Electron., vol. 24, no. 3, pp. 787-795. [DOI:10.1109/TPEL.2008.2012111]
7. [7] Ichikawa. M., Koga. K., Sonoda T., and Ueda. R., 1992, "Stability Analysis in Induction Motor Driven by V/f Controlled General Purpose Inverter", IEEE Transactions on Industry Applications, vol. 82,no. 2, pp. 472-481.
8. [8] Bojoi. R., Farina. F., Griva, G., and Profumo. F., 2005, "Direct Torque Control for Dual Three-phase Induction Motor Drives", IEEE Transactions on Industry Applications, vol. 41, no. 6, pp. 1627–1636. [DOI:10.1109/TIA.2005.858281]
9. [9] Pienkowski. K., 2012, "Analysis and control of Dual Stator Winding Induction Motor", Archives of Electrical Engineering, vol. 61, no. 3, pp. 421-438. [DOI:10.2478/v10171-012-0033-z]
10. [10] Basak. S.and Chakraborty. C., 2015, "Dual Stator Winding Induction Machine: Problems, Progress and Future Scope", IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4641–4652. [DOI:10.1109/TIE.2015.2409800]
11. [11] Ojo. O., Sastry. J., and Wu. Z., 2007, "High-Performance Control of a Dual Stator Winding DCPower Induction Generator", IEEE Transactions on Industry Applications, vol. 43, no. 2, pp. 582–592. [DOI:10.1109/TIA.2006.890020]
12. [12] Ojo. O. and Wu. Z. 2007, "Speed control of a dual stator winding induction machine", In Proc. IEEE APEC, pp. 229–235. [DOI:10.1109/APEX.2007.357519]
13. [13] Fredj. M. B., Khlifi. M. L., Rehaoulia. H., and Slimene. M. B., 2013, "Indirect Field-Oriented Control for Dual Stator Induction Motor Drive", Systems, Signals & Devices (SSD), 10th International Multi-Conference on.
14. [14] مویدی¬راد. ح.، فرشاد. م. و شمسی¬نژاد. م. ¬ع.، 1390، "ارائه شیوه¬ای جدید برای کنترل عصبی سرعت موتور القایی: مقاوم در قبال تغییرات مقاومت¬های استاتور و روتور و مناسب برای هر دو محدوده¬ی سرعت¬های خیلی کم و زیاد"، مجله¬ی مهندسی برق و کامپیوتر ایران، سال 9، شماره 2، صفحه¬ی 113- 107.
15. [15] مویدی¬راد. ح.، فرشاد. م. و شمسی¬نژاد. م. ¬ع.، 1390، "بهبود پروفایل سرعت در درایو کنترل سرعت موتور القایی با استفاده از ایده¬ای جدید در تولید پالس¬های کلیدزنی مبتنی بر شبکه¬های عصبی مصنوعی"، مجله¬ی سیستم¬های هوشمند در مهندسی برق، دانشگاه اصفهان، سال 2، شماره 4، صفحه¬ی 46- 35.
16. [16] مویدی¬راد. ح.، شمسی¬نژاد. م. ¬ع. و فرشاد. م.، 1391، "بهبود عملکرد درایو کنترل سرعت موتور القایی در محدوده¬ی سرعت-های پایین و بالا با جبران¬ساز شار روتور"، مجله¬ی انجمن مهندسین برق و الکترونيک ايران، سال 9، شماره 2 صفحه¬ی 64-59
17. [17] Holmes. D. G., McGrath. B. P., and Parker. S. G., 2012, "Current Regulation Strategies for Vector-Controlled Induction Motor Drives", IEEE Transactions on Industrial Electronics, vol. 59, no.10, pp. 3680–3689. [DOI:10.1109/TIE.2011.2165455]
18. [18] Joshi. B. M., Chandorkar. M. C., 2014, "Vector Control of Two-motor Single-inverter Induction Machine Drives", Electric Power Components and Systems, vol. 42, no. 11, pp. 1158–1171. [DOI:10.1080/15325008.2014.921949]
19. [19] D. B. Lawson and R. D. Lorenz, 1990, "A Simplified Approach to Continuous On-Line Tuning of Field Oriented Induction Motor Drives", IEEE Transactions On Industrial Applications, vol. 26, no. 3, pp. 420–424. [DOI:10.1109/28.55972]
20. [20] M. P. Kazmierkowski, 1991, "A Novel Vector Control Scheme for Transistor PWM Inverter-Fed InductionMotor Drive", IEEE Transactions On Industrial Applications, vol. 38, no.1, pp. 41-47.
21. [21] Chang. L., Doraiswami. R., and Kojabadi. H. M., 2005, "A MRAS-BasedAdaptive Pseudoreduced-Order Flux Observer for Sensorless InductionMotor Drives," IEEE Transactions on Power Electronics, vol. 20, no.4, pp. 930-176. [DOI:10.1109/TPEL.2005.850969]
22. [22] Dey. A., Chandra. D., Dwivedi. B., and Singh. B., 2009, "Vector Control of Three-Phase Induction Motor Using Artificial Intelligent Technique", ARPN Journal of Engineering and Applied Sciences, vol. 4, no. 4, pp. 57-67.
23. [23] Dujic. D., Jones. M., Levi. E., Vukosavic. S. N., and Wright. P., 2008, "Five-Leg Inverter PWM Technique for Reduced Switch Count Two-Motor Constant Power Applications", IET Electric Power Applications, vol. 2, no.5, pp.275-287. [DOI:10.1049/iet-epa:20070497]
24. [24] Nozawa. Y., Matsuse. K., Oka. K., 2006, "An Improved Method of Voltage Utility Factor for PWM Control of a Five-Leg Inverter in Two Induction Motor Drives", IEEJ Transactions on Electrical and Electronic Engineering, vol. 1, no. 1, pp. 108-111. [DOI:10.1002/tee.20024]
25. [25] Hew. W. P., Levi. E., Lim. C. S., Rahim. N. A., 2013, "Model Predictive Control of a Two-Motor Drive With Five-Leg-Inverter Supply", IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 54–65. [DOI:10.1109/TIE.2012.2186770]
26. [26] Feng. S. and. Mei. Y, 2015, "An Optimized Modulation Method for a Five-Leg-Inverter for Dual Induction Motor Drives", IEEE 18th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), pp. 1524–1529.
27. [27] Dangeam. S. andV. Kinnares, 2014, "Five-Leg Voltage Source Inverter for Driving Two Single-Phase Induction Motors", Electrical Machines and Systems (ICEMS), 17th International Conference on, , pp. 156 – 161.
28. [28] Liu. C., Wu. B., Wang. J., Xu. D., and Zargari. N. R., 2009, "A Novel Three-Phase Three-Leg AC/AC Converter Using Nine IGBTs", IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1151–1160. [DOI:10.1109/TPEL.2008.2004038]
29. [29] Blaabjerg. F., Loh. P. C., and Qin. Z., 2015, "Application Criteria for Nine-Switch Power Conversion Systems with Improved Thermal Performance", IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4608–4620. [DOI:10.1109/TPEL.2014.2360629]
30. [30] Matsuse. K., and Oka. K., 2007, "A Nine-switch Inverter for Driving Two AC Motors Independently", IEEJ Transactions on Electrical and Electronic Engineering, vol. 2, no. 1, pp. 94-96. [DOI:10.1002/tee.20102]
31. [31] Azizi. M., Beiranvand. R., and Mohamadian. M., 2016, "A New Family of Multi-Input Converters Based on Three Switches Leg", IEEE Transactions On Industrial Applications, vol. 63, no.11, pp. 6812 – 6822.
32. [32] Ojo. O. andWu. Z., 2008, "Modeling of a Dual-Stator-Winding Induction Machine Including the Effect of Main Flux Linkage Magnetic Saturation", IEEE Transactions on Industry Applications, vol. 44, no. 4, pp. 1099–1107. [DOI:10.1109/TIA.2008.926058]
33. [33] Hu. J. and Wu. B., 1998, "New Integration Algorithms for Estimating Motor Flux over a Wide Speed Range", IEEE Transactions on Power Electronics, vol. 13, no. 5, pp.969-976. [DOI:10.1109/63.712323]
34. [34] Bose. Bimal. K., Modern Power Electronics and AC Drives, Upper Saddle River, NJ: Prentice-Hall, 2002.
35. [35] Martin. J. P., Pierfederici. S., F. Meibody-Tabar, and Shamsi-Nejad. M. A., 2007, "Study of an Hybrid Current Controller Suitable for DC–DC or DC–AC Applications", IEEE Transactions on Power Electronics, vol. 22, no.6, pp. 2176 – 2186. [DOI:10.1109/TPEL.2007.909186]
36. [36] ابجدی. ر.، جلال. س. م.، سلطانی. ج. وفاطمی. ر.، 1392، "کنترل مستقیم گشتاور و شار یک موتور شش فاز القایی نامتقارن، تغذیه شده با اینورترهای سه سطحی SVPWM با بکارگیری طبقه¬بندی عصبی"، مجله¬ی کنترل، صفحه¬ی 15-9، سال 7، شماره 3.
37. [37] Lipo. Thomas. A. and Novotny. D. W., "Vector Control and Dynamics of AC Drives", Oxford University Press, 1997.
38. [38] Khanniche. M. S., Igic. P., Towers. S. M., Mawby. P. A., and Zhou. Z., 2005, "Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System", Journal Electrical Systems, vol. 1, no.4, pp. 33-46.
39. [39] Ceballos. S., Jaen. C., Osorno. D., Pou. J., and Zaragoza. J., 2011, "Power Losses Calculation Methodology to Evaluate Inverter Efficiency in Electrical Vehicles", 7th International Conference-Workshop Compatibility and Power Electronics (CPE), pp. 404-408.