Volume 13, Issue 2 (Journal of Control, V.13, N.2 Summer 2019)                   JoC 2019, 13(2): 43-52 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asghari R, Mozafari S B, Amraee T. Design Supplementary Controller Based on Stabilizing Effect of Delay for Damping Inter Area Oscillations in a Power System. JoC 2019; 13 (2) :43-52
URL: http://joc.kntu.ac.ir/article-1-476-en.html
1- Science and Research Branch
2- K. N. Toosi University
Abstract:   (5683 Views)

The delay associated with signal transmission through the wide-area measurement system reduces the functionality of the power oscillation damping control system. One of the important issues is the poor operation of the supplementary controller against delay existence, which limits the efficiency of damping of ancillary equipment, such as SVCs in a power system. This paper as a solution proposes a controller designed based on the stabilizing effect of delay. This controller applies to the SVC input the controlling signal with some delay. To determine the delay and controller parameters, an algorithm is proposed minimizing the rightmost real part of eigenvalues in the design stage. The stability analysis of the control system is performed with the eigenvalue tool. A four-machine power system is used to perform various simulations to assess the accuracy of the proposed control function and the feasibility of the proposed method. The simulation results show that the controller designed in a wide range of the measurement system delays, does not limit damping performance of SVC.

Full-Text [PDF 848 kb]   (2265 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2017/04/26 | Accepted: 2018/07/4 | Published: 2019/10/2

References
1. F. Milano, "Small-Signal Stability Analysis of Large Power Systems With Inclusion of Multiple Delays," IEEE Trans. Power Syst., vol. 31, no. 1, pp. 3257-3266, 2016. [DOI:10.1109/TPWRS.2015.2472977]
2. R. Hadidi and B. Jeyasurya, "Reinforcement learning based real-time wide-area stabilizing control agents to enhance power system stability," IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 489-497, 2013. [DOI:10.1109/TSG.2012.2235864]
3. M. Mokhtari, F. Aminifar, D. Nazarpour, and S. Golshannavaz, "Wide area power oscillation damping with a fuzzy controller compensating the continuous communication delays," IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1997-2005, 2013. [DOI:10.1109/TPWRS.2012.2215347]
4. M. Bhadu, N. Senroy, I. N. Kar, and G. N. Sudha, "Robust linear quadratic Gaussian-based discrete mode wide area power system damping controller," IET Gen. Trans. & Dist., Vol. 10, no.6 , 2016. [DOI:10.1049/iet-gtd.2015.1113]
5. Jing Ma, Tong Wang, Shangxing Wang, Xiang Gao, Xiangsheng Zhu, Zengping Wang and James S. Thorp," Application of Dual Youla Parameterization Based Adaptive Wide-Area Damping Control for Power System Oscillations," IEEE Trans. Power Syst., vol. 29, no. 4, 2014. [DOI:10.1109/TPWRS.2013.2296940]
6. X. Zhang, C. Lu, X. Xie, and Z. Y. Dong, "Stability Analysis and Controller Design of a Wide-Area Time-Delay System Based on the Expectation Model Method," IEEE Trans. Smart Grid, Vol. 7, no. 1, pp. 520-529, 2016. [DOI:10.1109/TSG.2015.2483563]
7. W. Yao, L. Jiang, J. Wen, Q. H. Wu, and S. Cheng, "Wide-Area Damping Controller of FACTS Devices for Inter-Area Oscillations Considering Communication Time Delays," IEEE Trans. Power Syst., vol. 29, no. 1, pp. 318-329, 2014. [DOI:10.1109/TPWRS.2013.2280216]
8. J. Li, Z. Chen, D. Cai, W. Zhen and Q. Huang, "Delay-Dependent Stability Control for Power System With Multiple Time-Delays," IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2316-2326, 2016. [DOI:10.1109/TPWRS.2015.2456037]
9. B. Yang, and Y. Sun, "IEEE A Novel Approach to Calculate Damping Factor Based Delay Margin for Wide Area Damping Control," IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3116-3117, 2014. [DOI:10.1109/TPWRS.2014.2315494]
10. L. Cheng, G. Chen, W. Gao, F. Zhang and G. Li, "Adaptive Time Delay Compensator (ATDC) Design for Wide-Area Power System Stabilizer," IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2957-2966, 2014. [DOI:10.1109/TSG.2014.2347401]
11. J. Li, Z. Chen, D. Cai, W. Zhen and Q. Huang, "Delay-Dependent Stability Control for Power System With Multiple Time-Delays," IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2316-2326, 2016. [DOI:10.1109/TPWRS.2015.2456037]
12. T. Vyhlidal, and M. Hromcik, "Parameterization of input shapers with delays of various distribution," Automatica 59, 256-263 (2015). [DOI:10.1016/j.automatica.2015.06.025]
13. T. Vyhlidal, N. Olgac, and V. Kucera, "Delayed resonator with acceleration feedback Complete stability analysis by spectral methods and vibration absorber design," Jour. Sound & Vibration. Vol. 333, pp. 6781-6795, 2014. [DOI:10.1016/j.jsv.2014.08.002]
14. V. Pradhan, A. M. Kulkarni, and S. A. Khaparde, "A Composite Strategy for Power Oscillation Damping Control Using Local and Wide Area Feedback Signals, " IEEE Trans. Power Syst., Vol. 31, No. 3, 2016. [DOI:10.1109/TPWRS.2015.2454294]
15. Y. Li, Y. Zhou, F. Liu, Y. Cao, and C. Rehtanz, "Design and Implementation of Delay-Dependent Wide-Area Damping Control for Stability Enhancement of Power Systems," IEEE Trans. Smart Grid, Vol. 8, no.4 , 2017. [DOI:10.1109/TSG.2015.2508923]
16. W. Yao, L. Jiang, J. Wen, Q. H. Wu, and S. Cheng, "Wide-Area Damping Controller of FACTS Devices for Inter-Area Oscillations Considering Communication Time Delays," IEEE Trans. Power Syst., vol. 29, no. 1, pp. 318-329, 2014. [DOI:10.1109/TPWRS.2013.2280216]
17. B. Yang, and Y. Sun, "IEEE A Novel Approach to Calculate Damping Factor Based Delay Margin for Wide Area Damping Control," IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3116-3117, 2014. [DOI:10.1109/TPWRS.2014.2315494]
18. R. Sipahi, S. I. Niculescu, C.T. Abdallah, W. Michiels and K. Gu, "Stability and stabilization of systems with time-delay limitations and opportunities", IEEE Ctrl. Syst. Mag, vol. 31 no. 1, pp. 38-65, 2011. [DOI:10.1109/MCS.2010.939135]
19. J.K. Hale and S.M Verduyn Lunel," Strong stabilization of neutral functional differential equations," IMA Jour. of Math. Ctrl. and Info. , vol. 19, pp.5-23, 2002. [DOI:10.1093/imamci/19.1_and_2.5]
20. M. van de Wal, B. de Jager, "A review of methods for input/output selection," Automatica vol. 37 pp. 487-510, 2001. [DOI:10.1016/S0005-1098(00)00181-3]
21. A. Heniche and I. Kamwa, "Assessment of two methods to select wide-area signals for power system damping control," IEEE Trans. Power Syst., vol. 23, no. 2, pp. 572-581, 2008. [DOI:10.1109/TPWRS.2008.919240]
22. J. V. Milanovic and A. C. S. Duque, "Identification of electromechanical modes and placement of PSSs using relative gain array," IEEE Trans. Power Syst., vol. 19, no. 1, pp. 410-417, 2004. [DOI:10.1109/TPWRS.2003.821454]
23. L. P. Kunjumuhammed, R. Singh and B. C. Pal, "Robust signal selection for damping of inter-area oscillations," IET Gen., Trans. & Dist., vol. 6, pp. 404, 2012. [DOI:10.1049/iet-gtd.2011.0670]
24. N. Olgac, T. Vyhlidal, R. Sipahi, "A new perspective in the stability assessment of neutral systems with multiple and cross-talking delays," SIAM Jour. of Ctrl. and Opti. vol. 47 no. 1, pp. 327-344, 2008. [DOI:10.1137/070679302]
25. F. Zhang, "the Schur Complement and Its Applications," Springer, New York, 2005. [DOI:10.1007/b105056]
26. W. Michiels and Niculescu Silviu-lulian, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, Philadelphia: SIAM, 2007. [DOI:10.1137/1.9780898718645]
27. M. Overton, HANSO, http://cs.nyu.edu/overton/software/hanso/, 2009.
28. Dimitri Breda, RossanaVermiglio, "Stability of Linear Delay Differential Equations a Numerical Approach with MATLAB,'' New York Heidelberg Dordrecht London: Springer, 2015.
29. P. Kundur, N. Balu, and M. Lauby, Power System Stability and Control, New York, NY, USA: McGraw-Hill Education, 1994.
30. http://www.eps.ee.kth.se/personal/vanfretti/pst

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb