2- Condition Monitoring Department, MAPNA Electrical and Control Engineering and Manufacturing Company (MECO), Mapna Blvd, 6th km Malard Road, Karaj, Iran

In this paper a systematic methodology to design a modified incremental conductance and a model predictive control (MPC) for maximum power point tracking of a photovoltaic system is presented. The PV system includes a PV module that supplies a DC link and also an energy storage system using a buck DC-DC converter. The incremental conductance (INC) method with two modifications is employed for maximum power point tracking (MPPT) within P-V characteristic curve according to changes in weather condition. To avoid a finite set control signal, the average model of the PV system is analytically calculated and subsequently the model is linearized around MPP. Designing an MPC with continuous control set, its performance respect to finite control set MPC is compared. The simulations demonstrate that the proposed controller with augmented integrator could track the MPP faster and with less steady state error.

Type of Article: Review paper |
Subject:
Special

Received: 2017/09/6 | Accepted: 2018/02/12 | Published: 2018/10/3

Received: 2017/09/6 | Accepted: 2018/02/12 | Published: 2018/10/3

1. P. Frankl, S. Nowak, M. Gutschner, S. Gnos, and T. Rinke, "Technology roadmap: solar photovoltaic energy," International Energy Association, 2010.

2. A. Lopez, B. Roberts, D. Heimiller, N. Blair, and G. Porro, "US renewable energy technical potentials: a GIS-based analysis," Contract, vol. 303, pp. 275-3000, 2012.

3. M. A. G. De Brito, L. Galotto, L. P. Sampaio, G. d. A. e Melo, and C. A. Canesin, "Evaluation of the main MPPT techniques for photovoltaic applications," IEEE transactions on industrial electronics, vol. 60, pp. 1156-1167, 2013. [DOI:10.1109/TIE.2012.2198036]

4. R. Kadri, J.-P. Gaubert, and G. Champenois, "An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control," IEEE Transactions on Industrial Electronics, vol. 58, pp. 66-75, 2011. [DOI:10.1109/TIE.2010.2044733]

5. B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, "Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system," IEEE Transactions on Power Electronics, vol. 26, pp. 1022-1030, 2011. [DOI:10.1109/TPEL.2010.2090903]

6. A. Al Nabulsi and R. Dhaouadi, "Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control," IEEE Transactions on Industrial Informatics, vol. 8, pp. 573-584, 2012. [DOI:10.1109/TII.2012.2192282]

7. W.-M. Lin, C.-M. Hong, and C.-H. Chen, "Neural-network-based MPPT control of a stand-alone hybrid power generation system," IEEE Transactions on Power Electronics, vol. 26, pp. 3571-3581, 2011. [DOI:10.1109/TPEL.2011.2161775]

8. M. Dahmane, J. Bosche, A. El-Hajjaji, and X. Pierre, "MPPT for photovoltaic conversion systems using genetic algorithm and robust control," in 2013 American Control Conference, 2013, pp. 6595-6600. [DOI:10.1109/ACC.2013.6580874]

9. C. Bordons and C. Montero, "Basic principles of MPC for power converters: Bridging the gap between theory and practice," IEEE Industrial Electronics Magazine, vol. 9, pp. 31-43, 2015. [DOI:10.1109/MIE.2014.2356600]

10. L. Wang, Model predictive control system design and implementation using MATLAB®: Springer Science & Business Media, 2009.

11. J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta, H. Abu-Rub, H. A. Young, et al., "State of the art of finite control set model predictive control in power electronics," IEEE Transactions on Industrial Informatics, vol. 9, pp. 1003-1016, 2013. [DOI:10.1109/TII.2012.2221469]

12. S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young, A. Marquez, et al., "Model predictive control: A review of its applications in power electronics," IEEE Industrial Electronics Magazine, vol. 8, pp. 16-31, 2014. [DOI:10.1109/MIE.2013.2290138]

13. S. Kouro, P. Cortés, R. Vargas, U. Ammann, and J. Rodríguez, "Model predictive control—A simple and powerful method to control power converters," IEEE Transactions on Industrial Electronics, vol. 56, pp. 1826-1838, 2009. [DOI:10.1109/TIE.2008.2008349]

14. P. E. Kakosimos, A. G. Kladas, and S. N. Manias, "Fast photovoltaic-system voltage-or current-oriented MPPT employing a predictive digital current-controlled converter," IEEE Transactions on Industrial Electronics, vol. 60, pp. 5673-5685, 2013. [DOI:10.1109/TIE.2012.2233700]

15. P. E. Kakosimos and A. G. Kladas, "Implementation of photovoltaic array MPPT through fixed step predictive control technique," Renewable Energy, vol. 36, pp. 2508-2514, 2011. [DOI:10.1016/j.renene.2011.02.021]

16. M. B. Shadmand, R. S. Balog, and H. Abu-Rub, "Model predictive control of PV sources in a smart DC distribution system: Maximum power point tracking and droop control," IEEE Transactions on Energy Conversion, vol. 29, pp. 913-921, 2014. [DOI:10.1109/TEC.2014.2362934]

17. S. Sajadian and R. Ahmadi, "Model Predictive Based Maximum Power Point Tracking for Grid-tied Photovoltaic Applications Using a Z-Source Inverter."

18. J. I. Metri, H. Vahedi, H. Y. Kanaan, and K. Al-Haddad, "Real-time implementation of model-predictive control on seven-level packed U-cell inverter," IEEE Transactions on Industrial Electronics, vol. 63, pp. 4180-4186, 2016. [DOI:10.1109/TIE.2016.2542133]

19. J. I. Leon, S. Kouro, L. G. Franquelo, J. Rodriguez, and B. Wu, "The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics," IEEE Transactions on Industrial Electronics, vol. 63, pp. 2688-2701, 2016. [DOI:10.1109/TIE.2016.2519321]

20. M. G. Judewicz, S. A. Gonzalez, N. I. Echeverria, J. R. Fischer, and D. O. Carrica, "Generalized Predictive Current Control (GPCC) for Grid-Tie Three-Phase Inverters."

21. J. Sun and H. Grotstollen, "Averaged modelling of switching power converters: reformulation and theoretical basis," in Power Electronics Specialists Conference, 1992. PESC'92 Record., 23rd Annual IEEE, 1992, pp. 1165-1172.

22. S. Bacha, I. Munteanu, and A. I. Bratcu, Power Electronic Converters Modeling and Control vol. 5: Springer, 2014. A. Dehghanzadeh and G. Farahani, "A Survey on Maximum Power Point Tracking Techniques in Solar Installations," presented at the International Conference on New Research Achievements in Electrical and Computer Engineering, Tehran, 2016.

23. H. K. Khalil, "Noninear Systems," Prentice-Hall, New Jersey, vol. 2, p. 5.1, 1996.

24. A. Dehghanzadeh, G. Farahani, and M. Maboodi, "A novel approximate explicit double-diode model of solar cells for use in simulation studies," Renewable energy, vol. 103, pp. 468-477, 2017. [DOI:10.1016/j.renene.2016.11.051]

25. A. Dehghanzadeh, G. Farahani, H. Vahedi, and K. Al-Haddad, "Explicit double-exponential modeling methods for photovoltaic cells," in Industrial Technology (ICIT), 2017 IEEE International Conference on, 2017, pp. 423-428.

26. P. Lezana, R. Aguilera, and D. E. Quevedo, "Model predictive control of an asymmetric flying capacitor converter," IEEE Transactions on Industrial Electronics, vol. 56, pp. 1839-1846, 2009. [DOI:10.1109/TIE.2008.2007545]

27. J. Rodriguez and P. Cortes, Predictive control of power converters and electrical drives vol. 40: John Wiley & Sons, 2012. [DOI:10.1002/9781119941446]

28. R. P. Aguilera and D. E. Quevedo, "Stability analysis of quadratic MPC with a discrete input alphabet," IEEE Transactions on Automatic Control, vol. 58, pp. 3190-3196, 2013. [DOI:10.1109/TAC.2013.2264551]

29. J. M. Maciejowski, Predictive control: with constraints: Pearson education, 2002.

30. R. P. Aguilera, P. Lezana, and D. E. Quevedo, "Finite-control-set model predictive control with improved steady-state performance," IEEE Transactions on Industrial informatics, vol. 9, pp. 658-667, 2013. [DOI:10.1109/TII.2012.2211027]