Volume 13, Issue 3 (Journal of Control, V.13, N.3 Fall 2019)                   JoC 2019, 13(3): 1-14 | Back to browse issues page

XML Persian Abstract Print

Abstract:   (4634 Views)

In this paper, an optimization problem for the observer trajectory in the bearings-only surface moving target tracking (BOT) is studied. The BOT depends directly on the observability of the target's position in the target/observer geometry or the optimal observer maneuver. Therefore, the maximum lower band of the Fisher information matrix is opted as an independent criterion of the target estimator. First, modeling of the optimal control problem of the observer path is presented based on the orthogonal Chebyshev polynomial. Then, a control law for the observer direction, which is independent of the initial conditions, is obtained using the direct numerical optimization. The advantages of the proposed model include maximization of the total maneuver time, calculation of the control law at the start time of the maneuver, and high flexibility in applying the tracking constraints of the observer's motion. The efficiency of the proposed algorithm is compared with the conventional path optimization methods using the Monte Carlo. In addition, the performance of the algorithm is evaluated in different scenarios for target tracking, including remote, near, moving, and stationary, and its reliability is investigated. It is also applied in the surface submarine tracking problem using sonar.

Full-Text [PDF 1434 kb]   (1339 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2018/01/6 | Accepted: 2018/05/30 | Published: 2019/12/31

1. K. Dogancay, "UAV path planning for passive emitter localization," IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 2, pp. 1150-1166, 2012. [DOI:10.1109/TAES.2012.6178054]
2. P. I. Reji and V. S. Dharun, "Recursive Multistage Estimator for Bearings only Passive Target Tracking in ESM EW Systems," Indian J. Sci. Technol., vol. 8, no. 26, pp. 1-7, 2015. [DOI:10.17485/ijst/2015/v8i26/74932]
3. B. Omkar Lakshmi Jagan, S. Koteswara Rao, A. Jawahar, and S. B. Karishma, "Passive target tracking using intercept sonar measurements," Indian J. Sci. Technol., vol. 9, no. 12, pp. 10-13, 2016. [DOI:10.17485/ijst/2016/v9i12/85554]
4. Bar-Shalom, Yaakov, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons, 2004.
5. Ristic, Branko, Sanjeev Arulampalam, and Neil Gordon. Beyond the Kalman filter: Particle filters for tracking applications. Artech house, 2004.
6. Mahler, Ronald PS. Advances in statistical multisource-multitarget information fusion. Artech House, 2014.
7. S. C. Nardone, A. G. Lindgren, K. A. I. F. Gong, and M. Er, "Fundamental Properties and Performance of Conventional Bearings-Only Target Motion Analysis," IEEE Trans. Automatic Control, Vol. AC-29, no. 9, Sep.1984. [DOI:10.1109/TAC.1984.1103664]
8. J.-P. Le Cadre, "Discrete-Time Observability and Estimability Analysis for Bearings-Only Target Motion Analysis," IEEE Trans. Aerosp. Elect. Syst. VOL. 33, NO. 1 JANUARY 1997. [DOI:10.1109/7.570737]
9. K.Gerlach,"Comments on Discrete-Time Observability and Esimability for Bearing-Only Target Motion Analysis," IEEE Trans. Aerosp. Electron. Syst., no. 13, pp. 1361-1367, 1998. [DOI:10.1109/7.722722]
10. J. a. Fawcett, "Effect of course maneuvers on bearings-only range estimation.," IEEE Trans. Acoust., vol. 36, no. 8, pp. 1193-1199, 1988. [DOI:10.1109/29.1648]
11. P. T. Liu, "An optimum approach in target tracking with bearing measurements," J. Optim. Theory Appl., vol. 56, no. 2, pp. 205-214, 1988. [DOI:10.1007/BF00939407]
12. S. E. Hammel, P. T. Liu, E. J. Hilliard, and K. F. Gong, "Optimal observer motion for localization with bearing measurements," Comput. Math. with Appl., vol. 18, no. 1-3, pp. 171-180, 1989. [DOI:10.1016/0898-1221(89)90134-X]
13. Y. Oshman and P. Davidson, "Optimization of observer trajectories for bearings-only target localization," IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 3, pp. 892-902, 1999. [DOI:10.1109/7.784059]
14. A.N. Bishop, "Bearing-Only Localization using Geometrically Constrained Optimization," IEEE Trans. Aeros. Elect. Syst. Vol. 45, Jan. 2009. [DOI:10.1109/TAES.2009.4805281]
15. امیر حسین نایبی، ناصر پریز، "تعیین مسیر رویت گر در موقعیت یابی تنها با زاویه سمت با در نظر گرفتن محدودیت میدان دید،" مجله کنترل جلد 8، بهار 1393و صفخه 71-55 2008-8345, Journal of Control, Vol. 10, No. 2, Summer 2016 ISSN
16. J. P. Helferty and D. R. Mudgett, "Optimal observer trajectories for bearings only tracking by minimizing the trace of the Cramer-Rao lowerbound," Proc. 32nd IEEE Conf. Decis. Control, pp. 936-939, 1993.
17. J. T. Betts, "Survey of Numerical Methods for Trajectory Optimization," J. Guid. Control. Dyn., vol. 21, no. 2, pp. 193-207, 1998. [DOI:10.2514/2.4231]
18. Mezzadri, Francesco, and Emanuele Galligani. "A Chebyshev technique for the solution of optimal control problems with nonlinear programming methods." Math. Comput. Simul. Vol. 121, pp. 95-108, 2016. [DOI:10.1016/j.matcom.2015.08.023]
19. مقداد محمدی، حسین قلی¬زاده نرم، "تطبیق کوواریانس های نویز فیلتر کالمن توسعه یافته در ردیابی هدف از روی سمت به روش بازگشتی," مجله کنترل جلد 10،تابستان 1395، صفحه 72-55 ISSN 2008-8345, Journal of Control, Vol. 10, No. 2, Summer 2016.
20. Elsayed ME, and M. El-Kady. "Chebyshev finite difference approximation for the boundary value problems." Math. Comput. Simul. vol. 139.2-3, pp. 513-523, 2003. [DOI:10.1016/S0096-3003(02)00214-X]
21. P. Taylor, "A Chebyshev Finite Difference Method For Solving A Class Of Optimal Control Problems," Int. J. Comput., no. February 2013, pp. 37-41, 2010.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.