Volume 13, Issue 4 (Journal of Control, V.13, N.4 Winter 2020)                   JoC 2020, 13(4): 77-88 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Adineh Ahari A, Karsaz A. A New Missile Guidance Law Design based on Interception Point Strategy and Fuzzy Logic against High Maneuvering Targets. JoC 2020; 13 (4) :77-88
URL: http://joc.kntu.ac.ir/article-1-560-en.html
1- Khorasan Institute of Higher Education
Abstract:   (6735 Views)
This paper presents a new hybrid guidance law based on classical interception point strategy and intelligent fuzzy logic methodology for missile guidance in the terminal phase for high maneuvering targets tracking. Due to the linear relationships of the missile -target engagement against the low maneuvering targets, the guidance law will be simply obtained based on the desired course angle of the missile. Since the missile-target engagement equations are highly nonlinear models, the guidance law solution against the high maneuvering targets is so complicated and time consuming. Therefore, the new guidance law against the high maneuvering targets is provided to calculate the interception point and time by using the obtained guidance law from the low maneuvering target and fuzzy logic. Performance comparisons are shown between the new fuzzy collision point (FCP) guidance law and the traditional sliding mode control, recently proposed augmented proportional navigation and collision point methods. Reducing in interception times besides the considerably improvement in control effort on four different missile-target engagement scenarios are among the achievements of the new hybrid method.
Full-Text [PDF 828 kb]   (3390 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2018/01/27 | Accepted: 2018/07/4 | Published: 2020/01/30

1. [1] H. S. Shin, A. Tsourdos, B. A. White and M. J. Tahk, "Earliest intercept geometry guidance to improve mid-course guidance in area air-defence," Int. J. Aerosp. Sci., vol. 11, no.2, pp. 118-125, 2010. [DOI:10.5139/IJASS.2010.11.2.118]
2. [2] G. Siouris, "Missile Guidance and Control Systems", Applied Mechanics Reviews, vol. 57, no. 6, p. B32, 2004. [DOI:10.1115/1.1849174]
3. [3] S. B. Phadke and S. E. Talole, "Sliding mode and inertial delay control based missile guidance," IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 4, pp. 3331-3346, 2012. [DOI:10.1109/TAES.2012.6324711]
4. [4] T. Yamasaki and S. Balakrishnan, "Sliding mode-based pure pursuit guidance for unmanned aerial vehicle rendezvous and chase with a cooperative aircraft," Proc. Inst. Mech. Eng., vol. 224, no. 10, pp. 1057-1067, 2010. [DOI:10.1243/09544100JAERO768]
5. [5] B. S. Yuri, A. SH. Ilya, and L. Arie, "Guidance and control of missile interceptor using second-order sliding modes," IEEE Trans. Aerosp. Electron. Syst, vol. 45, no. 1, pp. 110-124, 2009. [DOI:10.1109/TAES.2009.4805267]
6. [6] Z. Zhu, D. Xu, J. Liu and Y. Xia, "Missile guidance law based on extended state observer," IEEE Trans. Indus. Electron., vol. 60, no. 12, pp. 5882-5891, 2013. [DOI:10.1109/TIE.2012.2232254]
7. [7] V. S. Andrey, N. P. Pubudu and A. F. Farhan, "Problem of precision missile guidance: LQR and H∞ control frameworks," IEEE Trans. Aerosp. Electron. Syst, vol. 39, no.3, pp. 901-910, 2003. [DOI:10.1109/TAES.2003.1238744]
8. [8] C. S. Shieh, "Tunable H∞ robust guidance law for homing missiles," IEE Cont. Theory Appl., vol. 151, no. 1, pp. 103-107, 2004. [DOI:10.1049/ip-cta:20040065]
9. [9] M. Golestani and I. Mohammadzaman, "PID guidance law design using short time stability approach," Aerosp. Sci. Technol., vol. 43, no. 1, pp. 71-76, 2015. [DOI:10.1016/j.ast.2015.02.016]
10. [10] M. Guelman, "A qualitative study of proportional navigation," IEEE Trans. Aerosp. Electron. Syst., vol. 7, no. 4, pp. 637-643, 1971. [DOI:10.1109/TAES.1971.310406]
11. [11] X. Hu, S. Yang, F. Xiong and G. Zhang, "Stability of spinning missile with homing proportional guidance law," Aerosp. Sci. Technol., vol. 71, pp. 546-555, 2017. [DOI:10.1016/j.ast.2017.10.007]
12. [12] N. Cho and Y. Kim, "Modified pure proportional navigation guidance Law for impact time control", Guid., Cont., Dynamics, vol. 39, no. 4, pp. 852-872, 2016. [DOI:10.2514/1.G001618]
13. [13] G. Franzini, L. Tardioli, L. Pollini and M. Innocenti, "Visibility augmented proportional navigation guidance," J. Guidance, Control, Dynamics, vol. 41, no. 4, pp. 987-995, 2018. [DOI:10.2514/1.G002897]
14. [14] S. Ghosh, D. Ghose and S. Raha, "Capturability of augmented proportional navigation (APN) guidance with nonlinear engagement dynamics," American Control Conf. (ACC), vol. 4, no. 5, pp. 17-19, 2013. [DOI:10.1109/ACC.2013.6579805]
15. [15] I. J. Ha, "Performance analysis of PNG laws for randomly maneuvering targets," IEEE Trans. Aerosp. Electron. Syst., vol. 26, no.5, pp. 713-720, 1990. [DOI:10.1109/7.102706]
16. [16] D. Cho, H. Kim, M. Tahk, "Fast adaptive guidance against highly maneuvering targets," IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 2, pp. 671-680, 2016. [DOI:10.1109/TAES.2015.140958]
17. [17] L. He and X. Yan, "Adaptive terminal guidance law for spiral-diving maneuver based on virtual sliding targets," J. Guidance, Control, Dynamics, pp. 1-11, 2018. [DOI:10.2514/1.G003424]
18. [18] J. Holloway, M. Krstic, "Predictor observers for proportional navigation systems subjected to seeker delay," IEEE Trans. Control Syst. Technol., vol. 24, no. 6, pp. 2002-2015, 2016. [DOI:10.1109/TCST.2016.2526666]
19. [19] N. Dhananjay, D. Ghose and M.S. Bhat, "Capturability of a geometric guidance law in relative velocity space," IEEE Trans. Control Syst. Technol., vol. 17, no.1, pp. 111-122, 2009. [DOI:10.1109/TCST.2008.924561]
20. [20] Ch. Y. Kuo, D. Soetanto, and Y. Ch. Chiou, "Geometric analysis of flight control command for tactical missile guidance," IEEE Trans. Control Syst. Technol., vol.9, no.2, pp. 234-243, 2001. [DOI:10.1109/87.911375]
21. [21] B. A. White, R. Zbikoeski and A. Tsourdos, "Direct intercept guidance using differential geometry concepts," IEEE Trans. Aerosp. Electron. Syst., vol. 43, no.3, pp. 899-919, 2007. [DOI:10.1109/TAES.2007.4383582]
22. [22] H. Haghighi, H, Heidari, S. H. Sadati and J, Karimi, "A hierarchical and priority-based strategy for trajectory tracking in UAV formation flight," Int. Conf. Mech. and Aerosp. Eng. (ICMAE), pp. 797-800, 2017. [DOI:10.1109/ICMAE.2017.8038752]
23. [23] M. Rezaee and S. Seyedtabaii, "On an optimized fuzzy supervized multiphase guidance law," J. Control, vol. 18, no. 6, pp. 2010-2017, 2016. [DOI:10.1002/asjc.1283]
24. [24] L. Ch. Liang, H. H. Zhen, C. Y. Yue and C. B. Sen, "Development of an integrated fuzzy-logic-based missile guidance law against high speed target," IEEE Trans. Fuzzy. Syst., vol.12, no.2, pp. 157-169, 2004. [DOI:10.1109/TFUZZ.2004.825069]
25. [25] Q. Li, W, Zhang, G. Han and Y. Xie, "Fuzzy sliding mode control guidance law with terminal impact angle and acceleration constraints," J. Syst. Eng. Elect., vol, 27, no. 3, pp. 664-679, 2016. [DOI:10.1109/JSEE.2016.00070]
26. [26] S. E. Jung and T. M. Jea, "Real-time neural-network midcourse guidance," Control Eng. Practice, vol. 9, no.1, PP. 1145-1154, 2011. [DOI:10.1016/S0967-0661(01)00058-2]
27. [27] H. L. Choi, M. J. Tahk and H. Bang, "Neural network guidance based on pursuit-evasion games with enhanced performance," Control Eng. Practice, Vol. 14, no. 5, pp.735-742, 2006. [DOI:10.1016/j.conengprac.2005.03.001]
28. [28] Z. Li, Y. Xia, C. Yi Su, J. Fu, and W, He, "Missile guidance law based on robust model predictive control using neural-network optimization," IEEE Trans. Neural Netw. Learn. Syst., vol, 26, no. 8, pp. 1803-1809, 2015. [DOI:10.1109/TNNLS.2014.2345734]
29. [29] X. Li, G, Cui, W. Yi, "Detection and RM correction approach for manoeuvring target with complex motions," IET Signal Proc.., vol, 11, no. 4, pp. 378-386. 2017. [DOI:10.1049/iet-spr.2016.0444]
30. [30] H. Khaloozadeh and A. Karsaz, "A modified input estimation technique for tracking maneuvering targets," IET Radar, Sonar Navig., vol. 3, no. 1, pp. 30-41, 2007. [DOI:10.1049/iet-rsn:20080028]
31. [31] P. Hang, G. Liao, Z. Yang and J. Zheng, "Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized Hough-HAF transform," IEEE Trans. Geosci. Remote Sen., vol. 55, no. 1, pp. 320-335, 2017. [DOI:10.1109/TGRS.2016.2606436]
32. [32] A. Karsaz and H. Khaloozadeh, "Optimal partitioned state Kalman estimator," Signal Process., vol. 89, no. 4. pp. 532-547, 2009. [DOI:10.1016/j.sigpro.2008.10.016]
33. [33] M. H. Bahari, A. Karsaz, N, Pariz, "High Maneuvering Target Tracking Using a novel Hybrid Kalman filter-fuzzy logic architecture," J. Innovative Comput., Inform. Control (ICIC), vol. 6, no. 5, 2011.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb