Elahe Moradi ^{*}

In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonlinear system with uncertainties and based on the Lyapunov approach is presented. In the following, sufficient conditions to ensure finite time stabilization the considered system with state feedback are presented. In the proofs of proposed theorems are used from the appropriate Lyapunov-Krasovskii function and newton-Libniz-formula that can reduce the conservative. Also, all of the obtained conditions in this paper are delay-dependent and presented as linear matrix inequalities .Finally, the numerical examples and simulations exhibit the effectiveness of the proposed methods.

Type of Article: Research paper |
Subject:
Special

Received: 2018/06/9 | Accepted: 2018/12/1 | Published: 2019/08/15

Received: 2018/06/9 | Accepted: 2018/12/1 | Published: 2019/08/15

1. هادی غلامی، طاهره بینازاده، "طراحی کنترلکننده زمان محدود برای سیستمهای لیپ شیتز یک طرفه تأخیری"، مجله کنترل، جلد 12، شماره 1، صفحات 14-25، 1397.

2. D. Ivanescu & et al, Control of an interconnected power system: a time delay approach, IFAC Proceeding Volumes, vol. 34, no. 13, Aug. 2001, pp.449-454. [DOI:10.1016/S1474-6670(17)39032-8]

3. M. Wu, Y. He and J-H. She, Stability analysis and robust control of time-delay systems, Springer, 2010. [DOI:10.1007/978-3-642-03037-6]

4. J. G. Milton, Time delays and the control of biological systems: an overview, IFAC-Papers Online, vol. 48, no. 12, 2015, pp.87-92. [DOI:10.1016/j.ifacol.2015.09.358]

5. C. Zheng, N. Li and J. Cao, Matrix measure based stability criteria for high-order neural networks with proportional delay, Neurocomputing, Vol. 149, 2015, pp. 1149-1154. [DOI:10.1016/j.neucom.2014.09.016]

6. N. Zhao, X. Zhang , Y. Xue and P. Shi, Necessary conditions for exponential stability of linear neutral type systems with multiple time delays, Journal of the Franklin Institute, vol. 355, no. 1, Jan. 2018, pp. 458-473. [DOI:10.1016/j.jfranklin.2017.11.016]

7. C. B. Cardeliquio, M. Souza and A. R. Fioravanti, Stability analysis and output-feedback control design for time-delay systems, IFAC-Papers Online, vol. 50, no. 1, Jul. 2017, pp. 1292-1297. [DOI:10.1016/j.ifacol.2017.08.134]

8. S. Sh. Alviani, "Delay-dependent exponential stability of linear time-varying neutral delay systems", IFAC-Papers Online, vol. 48, no. 12, 2015, pp. 177-179. [DOI:10.1016/j.ifacol.2015.09.373]

9. G. Zhao, J. Wang, Finite time stability and L_2-gain analysis for switched linear systems with state-dependent switching, Journal of the Franklin Insitute, Vol. 350, 2013, pp. 1057-1092. [DOI:10.1016/j.jfranklin.2013.02.004]

10. P. Dorato, Short time stability in linear time-varying systems, InProc. IRE International convention record, Pages 83-87, 1961.

11. F. Tan, B. Zhou and G-R Duan, Finite-time stabilization of linear time-varying systems by piecewise constant feedback, Automatica, vol. 68, Jun. 2016, pp. 277-285. [DOI:10.1016/j.automatica.2016.01.003]

12. E. Moradi, M. R. Jahed-Motlagh and M. Barkhordari Yazdi, LMI-based criteria for robust finite-time stabilisation of switched systems with interval time-varying delay, IET Control Theory & applications, vol. 11, no. 16,2017, pp. 2688-2697. [DOI:10.1049/iet-cta.2016.1390]

13. P. Niamsup and V. N. Phat, Robust finite-time H_∞ control of linear time-varying delay systems with bounded control via Riccati equations, International Journal of Automation and Computing, vol. 3 , 2017 , pp. 1-9. [DOI:10.1007/s11633-016-1018-y]

14. S. He and F. Liu, Finite-time boundedness of uncertain time-delay neural network with markovian jumping parameters, Neurocomputing, vol. 103, Mar. 2013, pp. 87-92. [DOI:10.1016/j.neucom.2012.09.005]

15. C. E. de Souza and D. Coutingo, Robust stability and control of uncertain linear discrete time periodic systems with time-delay, Automatica, vol. 50, no. 2, Feb. 2014, pp. 431-441. [DOI:10.1016/j.automatica.2013.11.038]

16. S. B. Stojanovic, D. L. Debeljkovic and D. S. Antic, Robust finite-time stability and stabilization of linear uncertain time-delay systems, Asian Journal of control, vol. 15, no. 5, 2013, pp. 1548-1554 [DOI:10.1002/asjc.689]

17. Y. Zhang and et all, Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps, Neurocomputing, vol. 144, 2014, pp. 1-7. [DOI:10.1016/j.neucom.2013.12.054]

18. W. Guan and F. Liu, Finite-time H_∞ Memory state feedback control for uncertain singular TS fuzzy time-delay system under actuator saturation, Advances in Difference Equatuins, vol. 52 , 2016, pp. 1-19. [DOI:10.1186/s13662-016-0763-0]

19. J. Song, S. He, Finite-time robust passive control for a class of uncertain Lipschitz nonlinear systems with time-delays, Neurocomputing, vol. 159, 2015, pp. 275-281. [DOI:10.1016/j.neucom.2015.01.038]

20. J. Song and S. He, Observer-based finite-time passive control for a class of uncertain time-delayed Lipschitz nonlinear systems, Transactions of the Institute of Measurement and Control, vol. 36, no. 6, 2014, pp. 797-804. [DOI:10.1177/0142331214524266]

21. Y. Chen, Q. Lin, R. Lu and A. Xue, Finite time control of switched stochastic delayed systems, Neurocomputing, vol. 191, 2016, pp. 374-379. [DOI:10.1016/j.neucom.2016.01.042]

22. S. Boyd, L. E. Chaoui, E.Feron, and V. Balakrishnan, "Linear Matrix Inequalities in System and Control Theory", Philadelphia: SIAM, Vol. 15, 1994. [DOI:10.1137/1.9781611970777]

23. D. L. Debeljkovic and et al, Finite time stability of continuous time-delay systems: Jensen's inequality-based approach, Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference, June 2014, China, pp. 24-30. [DOI:10.1109/ICIEA.2014.6931125]

24. Y. Wang, L. Xie, C.E. Souza, Robust control of a class of uncertain nonlinear systems, Syst. Control Lett, vol. 19, 1992, pp. 139-149. [DOI:10.1016/0167-6911(92)90097-C]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |