Volume 15, Issue 1 (Journal of Control, V.15, N.1 Spring 2021)                   JoC 2021, 15(1): 35-49 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kaviri S, Tahsiri A, Taghirad H. A Distributed Framework Design for Formation Control of Under-actuated USVs in the Presence of Environmental Disturbances Using Terminal Sliding Mode Control. JoC. 2021; 15 (1) :35-49
URL: http://joc.kntu.ac.ir/article-1-669-en.html
1- K.N. Toosi university of technology
Abstract:   (2576 Views)
This paper proposes a distributed framework for formation control of USVs around a predefined target. This framework, according to the mission and problem conditions, includes three parts: determination of a desired path for each USV, preventing USVs entry to the target area and tracking the desired path of USVs under environmental disturbances. In the first part, a distributed approach is proposed to determine desired path for each USV and forming an aimed USVs arrangement around the target. In the second part, by modifying artificial potential function and smoothly redirecting USVs, the restriction of not entering the target’s region is met. Finally, in the third section, a robust control algorithm for the USVs navigation in the presence of wind and sea current disturbances is developed based on the nonsingular terminal sliding mode control. The developed control algorithm firstly improves maneuverability of USVs using virtual velocity command planning, and secondly, provides a finite time trajectory tracking. Also, stability of the closed loop control is analyzed using Lyapunov stability theorem and the performance of the proposed control algorithm is compared with results of the conventional terminal sliding mode control. Simulation results demonstrate proper performance of the proposed framework in terms of improving tracking accuracy of the desired path and reaching a circular arrangement of USVs surrounding the target.
Full-Text [PDF 1935 kb]   (223 Downloads)    
Type of Article: Research paper | Subject: General
Received: 2019/05/14 | Accepted: 2019/12/26 | ePublished ahead of print: 2020/10/5 | Published: 2020/06/21

References
1. [ ] Tan, Y. and Zheng, Z.Y., 2013. Research advance in swarm robotics. Defence Technology, 9(1), pp.18-39. [DOI:10.1016/j.dt.2013.03.001]
2. [ ] Faghih, S. and Shojaei, K., 2017. Partial State Feedback Control for Trajectory Tracking of Underactuated Autonomous Underwater Vehicle by Using Neural Adaptive Dynamic Surface Control. Journal of Control, 11(2), pp.43-54.
3. [ ] Qiao, L. and Zhang, W., 2017. Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles. IET Control Theory & Applications, 11(8), pp.1293-1306. [DOI:10.1049/iet-cta.2017.0016]
4. [ ] B. Liu, Y. and Bucknall, R., 2016. The angle guidance path planning algorithms for unmanned surface vehicle formations by using the fast marching method. Applied Ocean Research, 59, pp.327-344. [DOI:10.1016/j.apor.2016.06.013]
5. [ ] Do KD., 2011. Formation control of under-actuated ships with elliptical shape approximation and limited communication ranges. Automatica, 48, pp.1380-1388. [DOI:10.1016/j.automatica.2011.11.013]
6. [ ] Cui, R., Ge, S.S., How, B.V.E. and Choo, Y.S., 2010. Leader-follower formation control of under-actuated autonomous underwater vehicles. Ocean Engineering, 37(17-18), pp.1491-1502. [DOI:10.1016/j.oceaneng.2010.07.006]
7. [ ] Fahimi, F., 2007. Sliding-mode formation control for under-actuated surface vessels. IEEE Transactions on Robotics, 23(3), pp.617-622. [DOI:10.1109/TRO.2007.898961]
8. [ ] Xie, W., Ma, B., Fernando, T. and Iu, H.H.C., 2018. A new formation control of multiple under-actuated surface vessels. International Journal of Control, 91(5), pp.1011-1022. [DOI:10.1080/00207179.2017.1303849]
9. [ ] Cortes, J., Martinez, S., Karatas, T. and Bullo, F., 2004. Coverage control for mobile sensing networks. IEEE Transactions on robotics and Automation, 20(2), pp.243-255. [DOI:10.1109/TRA.2004.824698]
10. [ ] Mohseni, F., Doustmohammadi, A. and Menhaj, M.B., 2014. Distributed receding horizon coverage control for multiple mobile robots. IEEE Systems Journal, 10(1), pp.198-207. [DOI:10.1109/JSYST.2014.2325219]
11. [ ] Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots. Autonomous robot vehicles (pp. 396-404). Springer, New York, NY. [DOI:10.1007/978-1-4613-8997-2_29]
12. [ ] Sahu, B.K. and Subudhi, B., 2017. Potential function-based path-following control of an autonomous underwater vehicle in an obstacle-rich environment. Transactions of the Institute of Measurement and Control, 39(8), pp.1236-1252. [DOI:10.1177/0142331216634424]
13. [ ] Rezaee, H. and Abdollahi, F., 2013. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Transactions on Industrial Electronics, 61(1), pp.347-354. [DOI:10.1109/TIE.2013.2245612]
14. [ ] Shtessel, Y., Edwards, C., Fridman, L. and Levant, A., 2014. Sliding mode control and observation. New York: Springer New York. [DOI:10.1007/978-0-8176-4893-0]
15. [ ] Ghasemi, M. and Nersesov, S.G., 2014. Finite-time coordination in multiagent systems using sliding mode control approach. Automatica, 50(4), pp.1209-1216. [DOI:10.1016/j.automatica.2014.02.019]
16. [ ] Ashrafiuon, H., Muske, K.R., McNinch, L.C. and Soltan, R.A., 2008. Sliding-mode tracking control of surface vessels. IEEE transactions on industrial electronics, 55(11), pp.4004-4012. [DOI:10.1109/TIE.2008.2005933]
17. [ ] Elmokadem, T., Zribi, M. and Youcef-Toumi, K., 2017. Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles. Ocean Engineering, 129, pp.613-625. [DOI:10.1016/j.oceaneng.2016.10.032]
18. [ ] J. Heins, P.H., Jones, B.L. and Taunton, D.J., 2017. Design and validation of an unmanned surface vehicle simulation model. Applied Mathematical Modelling, 48, pp.749-774. [DOI:10.1016/j.apm.2017.02.028]
19. [ ] Liu, Z., Zhang, Y., Yu, X. and Yuan, C., 2016. Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control, 41, pp.71-93. [DOI:10.1016/j.arcontrol.2016.04.018]
20. [ ] Fossen, T.I., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons. [DOI:10.1002/9781119994138]
21. [ ] Blendermann, W., 1994. Parameter identification of wind loads on ships. Journal of Wind Engineering and Industrial Aerodynamics, 51(3), pp.339-351. [DOI:10.1016/0167-6105(94)90067-1]
22. [ ] Chen, Q., Yin, Q., Fan, A., Sun, X. and Mou, X., 2015, June. Research on the calculation methods of wind load coefficients of inland cruise ship. In 2015 International Conference on Transportation Information and Safety (ICTIS) (pp. 871-876). IEEE. [DOI:10.1109/ICTIS.2015.7232159]
23. [ ] Haddara, M.R. and Soares, C.G., 1999. Wind loads on marine structures. Marine Structures, 12(3), pp.199-209. [DOI:10.1016/S0951-8339(99)00023-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb