In this paper autonomous modification of satellite attitude in its orbit is implemented for low earth orbit satellites using Model Predictive Control. MPC minimizes force which applying on the thrusters subject to hard constraints on the control input and output of the system. Here Clohessy-Wilshire equations are utilized by consideration of main disturbance of low orbits such as Atmospheric Drag and Non-Spherical earth disturbance for the design of MPC. The result of simulation proves that this MPC can amend the difference between the linear and non-linear mathematical models of the satellite. In addition, not only orbital disturbances are compensated but also the satellite maintained in orbit with high accuracy. For performance evaluation of this MPC method, A Linear Quadratic Regulator is realized for Orbitchr('39')s autonomous control; the result of these two methods demonstrated that fuel consummation and control effort in MPC manner is considerably less than LQR method.

Type of Article: Research paper |
Subject:
Special

Received: 2019/09/25 | Accepted: 2020/01/12 | Published: 2021/05/22

Received: 2019/09/25 | Accepted: 2020/01/12 | Published: 2021/05/22

1. [1] "[Space technology series] David A Vallado - Fundamentals of astrodynamics and applications (1997, McGraw-Hill)." .

2. [2] M. M. Tavakoli and N. Assadian, "Model predictive orbit control of a Low Earth Orbit satellite using Gauss's variational equations," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 228, no. 13, pp. 2385-2398, 2014. [DOI:10.1177/0954410013516252]

3. [3] "Autonomous orbit control with position and velocity feedback using modern control theory," Dec. 1997.

4. [4] توکلی، محمد مهدی, "کنترل پیش بین مدل - پایه مدار یک ماهواره ی ارتفاع پایین با استفاده از معادلات تغییراتی گاوس," پایان نامه کارشناسی ارشد, دانشگاه صنعتی شریف, 1391.

5. [5] A. Weiss, U. V. Kalabić, and S. Di Cairano, "Station keeping and momentum management of low-thrust satellites using MPC," Aerospace Science and Technology, vol. 76, pp. 229-241, 2018. [DOI:10.1016/j.ast.2018.02.014]

6. [6] H. Bolandi and S. Abrehdari, "Precise Autonomous Orbit Maintenance of a Low Earth Orbit Satellite," Journal of Aerospace Engineering, vol. 31, no. 4, p. 04018034, 2018. [DOI:10.1061/(ASCE)AS.1943-5525.0000823]

7. [7] Y. Plam, R. Van Allen, J. Wertz, and T. Bauer, "Autonomous orbit control experience on TacSat-2 using microcosm's Orbit Control Kit (OCK)," Advances in the Astronautical Sciences, vol. 131, pp. 97-106, 2008.

8. [8] A. Lamy, M.-C. Charmeau, and D. Laurichesse, "Experiment of Autonomous Orbit Control on DEMETER: In-Flight Results and Perspectives," 2012.

9. [9] S. D'Amico, J.-S. Ardaens, and R. Larsson, "Spaceborne Autonomous Formation-Flying Experiment on the PRISMA Mission," Journal of Guidance, Control, and Dynamics, vol. 35, no. 3, pp. 834-850, May 2012. [DOI:10.2514/1.55638]

10. [10] D. Prieto and Z. Ahmad, "A drag free control based on model predictive technics," pp. 1527-1532, 2005.

11. [11] S. De Florio and S. D'Amico, "Optimal autonomous orbit control of remote sensing spacecraft," Advances in the Astronautical Sciences, vol. 134, no. December 2013, pp. 949-967, 2009.

12. [12] A. Garulli, A. Giannitrapani, M. Leomanni, and F. Scortecci, "Autonomous Low-Earth-Orbit Station-Keeping with Electric Propulsion," Journal of Guidance, Control, and Dynamics, vol. 34, no. 6, pp. 1683-1693, 2012. [DOI:10.2514/1.52985]

13. [13] A. Weiss, U. Kalabić, and S. Di Cairano, "Model Predictive Control for simultaneous station keeping and momentum management of low-thrust satellites," Proceedings of the American Control Conference, vol. 2015-July, pp. 2305-2310, 2015. [DOI:10.1109/ACC.2015.7171076]

14. [14] A. Walsh, S. Di Cairano, and A. Weiss, "MPC for coupled station keeping, attitude control, and momentum management of low-thrust geostationary satellites," Proceedings of the American Control Conference, vol. 2016-July, pp. 7408-7413, 2016. [DOI:10.1109/ACC.2016.7526842]

15. [15] H. D. Curtis et al., Orbital Mechanics for Engineering Students Third Edition Butterworth-Heinemann is an imprint of Elsevier. 2014. [DOI:10.1016/B978-0-08-097747-8.00006-2]

16. [16] E. F. Camacho and C. (Carlos) Bordons, Model predictive control. Springer, 2007. [DOI:10.1007/978-0-85729-398-5]

17. [17] Y. Lim, Y. Jung, and H. Bang, "Robust model predictive control for satellite formation keeping with eccentricity/inclination vector separation," Advances in Space Research, vol. 61, no. 10, pp. 2661-2672, 2018. [DOI:10.1016/j.asr.2018.02.036]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |