Volume 15, Issue 4 (Journal of Control, V.15, N.4 Winter 2022)                   JoC 2022, 15(4): 49-58 | Back to browse issues page

XML Persian Abstract Print

1- Malek Ashtar University of technology,Tehran
Abstract:   (5683 Views)
In this paper, an adaptive fault tolerant nonlinear control is proposed for attitude tracking problem of satellite with three magnetorquers and one reaction wheel in the presence of inertia uncertainties, external disturbances, and actuator faults. Firstly, sliding surface variable is chosen based on avoiding the singularity of control signal and guaranteeing the convergence of attitude tracking error to zero in a finite-time. Subsequently, modified non-singular fast terminal sliding mode is designed as fault tolerant control approach. Then, the control gain of reaching law is adaptively designed to improve the performance of proposed controller. The adaptive control gain is designed independent of the upper and lower bounds of the actuator effectiveness factors. Stability proof is performed by Lyapunov function candidate to show that attitude tracking errors and angular velocities are converged to zero. To evaluate the performance of proposed method, simulation results are compared with their non-adaptive version. Outcomes show better performance of the proposed controller in tracking the desired attitude, a significant reduction in convergence time, and reduction in the chattering of control torque.
Full-Text [PDF 1411 kb]   (834 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2020/07/4 | Accepted: 2020/12/10 | ePublished ahead of print: 2021/01/3 | Published: 2021/12/22

1. [1] T. Jiang and K. Khorasani, "A fault detection, isolation and reconstruction strategy for a satellite's attitude control subsystem with redundant reaction wheels," in 2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, pp. 3146-3152: IEEE. [DOI:10.1109/ICSMC.2007.4413851]
2. [2] X. Han, D. Li, N. Xu, and H. Yu, "A fault-tolerant control method and its applications in aerospace industry," in 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS), 2014, pp. 62-65: IEEE. [DOI:10.1109/ICRMS.2014.7107137]
3. [3] S. Ghasemi and K. Khorasani, "Fault detection and isolation of the attitude control subsystem of spacecraft formation flying using extended Kalman filters," International Journal of Control, vol. 88, no. 10, pp. 2154-2179, 2015. [DOI:10.1080/00207179.2015.1039591]
4. [4] J. Jin, S. Ko, and C.-K. Ryoo, "Fault tolerant control for satellites with four reaction wheels," Control Engineering Practice, vol. 16, no. 10, pp. 1250-1258, 2008. [DOI:10.1016/j.conengprac.2008.02.001]
5. [5] A. Golzari, H. N. Pishkenari, H. Salarieh, and T. Abdollahi, "Quaternion based linear time-varying model predictive attitude control for satellites with two reaction wheels," Aerospace Science and Technology, p. 105677, 2020. [DOI:10.1016/j.ast.2019.105677]
6. [6] C. Yue, F. Wang, X. Cao, Q. Shen, and X. Chen, "Robust fault-tolerant attitude tracking with guaranteed prescribed performance," Journal of the Franklin Institute, vol. 357, no. 1, pp. 229-253, 2020. [DOI:10.1016/j.jfranklin.2019.10.003]
7. [7] Q. Liu, M. Liu, and J. Yu, "Adaptive Fault-Tolerant Control for Attitude Tracking of Flexible Spacecraft With Limited Data Transmission," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019.
8. [8] Z. Zhang, D. Ye, and Z. Sun, "Observer-Based Backstepping Fault-tolerant Control for Spacecraft with Reaction-wheel Failures," in Journal of Physics: Conference Series, 2019, vol. 1215, no. 1, p. 012012: IOP Publishing. [DOI:10.1088/1742-6596/1215/1/012012]
9. [9] M. Tavakoli and N. Assadian, "Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating," Advances in Space Research, vol. 61, no. 6, pp. 1588-1599, 2018. [DOI:10.1016/j.asr.2017.12.032]
10. [10] Y. Miao, I. Hwang, M. Liu, and F. Wang, "Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage," Aerospace Science and Technology, vol. 93, p. 105312, 2019. [DOI:10.1016/j.ast.2019.105312]
11. [11] H.-h. Long, J.-k. Zhao, and J.-q. Lai, "H∞ inverse optimal adaptive fault-tolerant attitude control for flexible spacecraft with input saturation," Journal of Shanghai Jiaotong University (Science), vol. 20, no. 5, pp. 513-527, 2015. [DOI:10.1007/s12204-015-1659-y]
12. [12] B. Huo, Y. Xia, L. Yin, and M. Fu, "Fuzzy adaptive fault-tolerant output feedback attitude-tracking control of rigid spacecraft," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 1898-1908, 2016. [DOI:10.1109/TSMC.2016.2564918]
13. [13] H. Lee and Y. Kim, "Fault-tolerant control scheme for satellite attitude control system," IET control theory & applications, vol. 4, no. 8, pp. 1436-1450, 2010. [DOI:10.1049/iet-cta.2009.0159]
14. [14] Q. Hu, "Robust adaptive sliding-mode fault-tolerant control with L2-gain performance for flexible spacecraft using redundant reaction wheels," IET control theory & applications, vol. 4, no. 6, pp. 1055-1070, 2010. [DOI:10.1049/iet-cta.2009.0140]
15. [15] Q. Hu and B. Xiao, "Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness," Nonlinear Dynamics, vol. 64, no. 1-2, pp. 13-23, 2011. [DOI:10.1007/s11071-010-9842-z]
16. [16] Godard and K. D. Kumar, "Robust attitude stabilization of spacecraft subject to actuator failures," Acta Astronautica, vol. 68, no. 7-8, pp. 1242-1259, 2011. [DOI:10.1016/j.actaastro.2010.10.017]
17. [17] Q. Hu, B. Xiao, and M. Friswell, "Fault tolerant control with H∞ performance for attitude tracking of flexible spacecraft," IET control theory & applications, vol. 6, no. 10, pp. 1388-1399, 2012. [DOI:10.1049/iet-cta.2011.0496]
18. [18] Q. Hu and B. Xiao, "Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft," International Journal of Systems Science, vol. 44, no. 12, pp. 2273-2286, 2013. [DOI:10.1080/00207721.2012.702236]
19. [19] K. Lu and Y. Xia, "Finite-time fault-tolerant control for rigid spacecraft with actuator saturations," IET Control Theory & Applications, vol. 7, no. 11, pp. 1529-1539, 2013. [DOI:10.1049/iet-cta.2012.1031]
20. [20] Z. Han, K. Zhang, T. Yang, and M. Zhang, "Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode," IET Control Theory & Applications, vol. 10, no. 16, pp. 1991-1999, 2016. [DOI:10.1049/iet-cta.2016.0044]
21. [21] Y. Bai, J. D. Biggs, X. Wang, and N. Cui, "Attitude tracking with an adaptive sliding mode response to reaction wheel failure," European Journal of Control, vol. 42, pp. 67-76, 2018. [DOI:10.1016/j.ejcon.2018.02.008]
22. [22] K. D. Kumar, N. Abreu, and M. Sinha, "Fault-tolerant attitude control of miniature satellites using reaction wheels," Acta Astronautica, vol. 151, pp. 206-216, 2018. [DOI:10.1016/j.actaastro.2018.05.004]
23. [23] H. Bolandi, M. Haghparast, and M. Abedi, "A reliable fault tolerant attitude control system based on an adaptive fault detection and diagnosis algorithm together with a backstepping fault recovery controller," scientiairanica, vol. 20, no. 6, pp. 1999-2014, 2013.
24. [24] بلندی، ح.، عابدی، م.، حق‌پرست، م.، "طراحی الگوریتم‌های آشکارسازی و جداسازی عیب مبتنی بر حدود آستانة تطبیقی برای زیرسیستم کنترل وضعیت یک ماهواره سه محوره"، علوم و فناوری فضایی، جلد 6، شماره 1، صفحه 31-46، 1392.
25. [25] A. N. Avanaki, M. Hajatipour, and M. M. Ahmadian, "Combination of fault tolerant controller and gyro bias observer in satellite attitude determination system," in 2017 International Symposium on Computer Science and Software Engineering Conference (CSSE), 2017, pp. 49-54: IEEE. [DOI:10.1109/CSICSSE.2017.8320116]
26. [26] عابدی، م.،, نصراللهی، س.، "طراحی یک زیر سیستم تعیین وضعیت تحمل پذیر عیب خودکار برای ماهواره سه محوره مبتنی بر استخراج ماتریس های دوران مختلف و محاسبه معیارهای واریانسی"، مجله کنترل، جلد 9، شماره 3، صفحه 51-67، 1394.
27. [27] بوستان، د.، ح. ثانی، سیدک.، پریز، ن.، "کنترل تحمل پذیر خطا برای ماهواره به روش معکوس دینامیک غیرخطی" علوم و فناوری فضایی، جلد 8، شماره 2، 1394.
28. [28] Y. Jiang, Q. Hu, and G. Ma, "Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures," ISA transactions, vol. 49, no. 1, pp. 57-69, 2010. [DOI:10.1016/j.isatra.2009.08.003]
29. [29] M. J. Sidi, Spacecraft dynamics and control: a practical engineering approach. Cambridge university press, 1997. [DOI:10.1017/CBO9780511815652]
30. [30] Q. Hu, Y. Shi, and X. Shao, "Adaptive fault-tolerant attitude control for satellite reorientation under input saturation," Aerospace Science and Technology, vol. 78, pp. 171-182, 2018. [DOI:10.1016/j.ast.2018.04.015]
31. [31] D. Ivanov, M. Y. Ovchinnikov, V. Penkov, D. Roldugin, D. Doronin, and A. Ovchinnikov, "Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties," Acta Astronautica, vol. 132, pp. 103-110, 2017. [DOI:10.1016/j.actaastro.2016.11.045]
32. [32] J.-F. Trégouët, D. Arzelier, D. Peaucelle, C. Pittet, and L. Zaccarian, "Reaction wheels desaturation using magnetorquers and static input allocation," IEEE Transactions on Control Systems Technology, vol. 23, no. 2, pp. 525-539, 2014. [DOI:10.1109/TCST.2014.2326037]
33. [33] D. Bustan, N. Pariz, and S. K. H. Sani, "Robust fault-tolerant tracking control design for spacecraft under control input saturation," ISA transactions, vol. 53, no. 4, pp. 1073-1080, 2014. [DOI:10.1016/j.isatra.2014.03.006]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.