Volume 11, Issue 4 (Journal of Control, V.11, N.4 Winter 2018)                   JoC 2018, 11(4): 57-71 | Back to browse issues page

XML Persian Abstract Print


1- Ferdowsi University of Mashhad
2- Delft University of Technology
Abstract:   (16065 Views)

: In this paper, a novel scheme based on sliding mode control method for impedance control of a single link flexible robot arm when it comes into contact with unknown environment, is presented. The proposed control strategy is robust against the changes of the environment parameters (such as stiffness and damping coefficient), the unknown Coulomb friction disturbances, payload and viscous friction variations. The proposed scheme is also valid for both constrained and unconstrained motions. In our new approach, the controller automatically switches from a free to a constrained motion mode therefore it does not need an algorithm to detect collision between the link and the environment. In this regard, impedance control is proposed with the inner loop position. This means that in the free motion, the applied force to the environment is zero and the reference trajectory for the inner loop position is the desired trajectory. In the constrained motion, the reference trajectory for the inner loop is determined by the desired impedance dynamic. Feasibility and effectiveness of the proposed control scheme are demonstrated via numerical simulations.

Full-Text [PDF 1843 kb]   (4233 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2017/01/3 | Accepted: 2017/07/27 | ePublished ahead of print: 2017/11/11 | Published: 2017/11/11

References
1. S. K. Dwivedy, and P. Eberhard, "Dynamic analysis of flexible manipulators, a literature review". Mechanism and Machine Theory, vol.41, Issue 3, pp. 749-777, 2006. [DOI:10.1016/j.mechmachtheory.2006.01.014]
2. O. Sawodny, H, Aschemann, and A. Bulach, "Mechatronical designed control of fire rescue turnable ladders as flexible link robots," In: Proceedings of the IFAC 15th triennial world congress, Barcelona; 2002.
3. R. A. Beasley, R. D. Howe, "Model-based error correction for flexible robotic surgical instruments," Proceedings of the robotics: science and systems, vol. I. Cambridge (MA): Massachusetts Institute of Technology; 2005. [DOI:10.15607/RSS.2005.I.047]
4. N. Hogan. "Impedance Control: an Approach to Manipulation: Part1, Part2, Part3", Journal of Dynamic Systems, Measurement and Control, vol. 107, pp. 1-24, 1985. [DOI:10.1115/1.3140702]
5. T .Lasky., and T. C Hsia., "On force-tracking impedance control of robot manipulators", Proceedings of the IEEE International Conference on Robotics and Automation, pp. 274-280, 1991 [DOI:10.1109/ROBOT.1991.131587]
6. S. Lee, and H. S. Lee, "Intelligent control of manipulators interfacing with an uncertain environment based on generalized impedance", Proceedings of IEEE Symposium on Intelligent Control, pp. 61-66, 1991.
7. H. Seraji, and R. Colbaugh, "Force tracking in impedance control", Proceeding of the IEEE International Conference on Robotics and Automation, pp. 499-506. 1993. [DOI:10.1109/ROBOT.1993.291908]
8. S. Jung, T. C. Hsia, and R. G. Bonitz, "Force tracking impedance control of robot manipulators under unknown environment", IEEE Transactions on Control Systems Technology, vol. 12, issue. 3, pp. 474-483, 2004. [DOI:10.1109/TCST.2004.824320]
9. M. M. Fateh, and R. Babaghasabha, "Impedance control of robots using voltage control strategy", Nonlinear Dynamics, vol. 74, pp. 277–286, 2013. [DOI:10.1007/s11071-013-0964-y]
10. M. Sharifi, S. Behzadipour, and G. R. Vossoughi, "Nonlinear model reference adaptive impedance control for human-robot interactions", Control Engineering Practice, vol. 32, pp. 9–27, 2014. [DOI:10.1016/j.conengprac.2014.07.001]
11. Q. Xu,"Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation", IEEE transactions on industrial electronics, vol. 62, no. 2, pp. 1201- 1209, 2015. [DOI:10.1109/TIE.2014.2352605]
12. S. A. M. Dehghan, M Danesh, and F. sheikholeslam, "Adaptive hybrid force/position control of robot manipulators using an adaptive force estimator in the presence of parametric uncertainty", Advanced Robotics, vol. 29, no. 4, pp. 209–223, 2015. [DOI:10.1080/01691864.2014.985609]
13. Heck D., Saccon A., Wouw N. V. D., and Nijmeijer H., 2016, "Guaranteeing stable tracking of hybrid position-force trajectories for a robot manipulator interacting with a stiff environment", Automatica, vol. 63, pp. 235- 247. [DOI:10.1016/j.automatica.2015.10.029]
14. M. Benosman, and G. Le Vey, "Control of flexible manipulators: A survey". Robotica, vol.22, Issue 5, pp. 533-545, 2004. [DOI:10.1017/S0263574703005642]
15. G. Mamani, J. Besedas, and V. Feliu, "Sliding mode tracking control of a very lightweight single-link flexible robot robust to payload changes and motor Friction". Journal of Vibration and Control, vol. 18, no. 8, pp 1141-1155, 2011. [DOI:10.1177/1077546311416269]
16. C. F. Castillo-Berrio, and V. Feliu-Batlle, "Vibration-free position control for a two degrees of freedom flexible-beam sensor". Mechatronics, vol. 27, pp 1-12, 2015. [DOI:10.1016/j.mechatronics.2015.01.005]
17. I. Payo, V. Feliu, and O. D. Cortazar, "Force control of a very lightweight single-link flexible arm based on coupling torque feedback". Mechatronics, vol. 19, pp 334-347, 2009. [DOI:10.1016/j.mechatronics.2008.10.003]
18. G. R. Vossoughi, and A. Karimzadeh, "Impedance Control of a Flexible Link Robot for Constrained and Unconstrained Maneuvers Using Sliding Mode Control (SMC) Method". Scientia Iranica, vol. 14, no. 1, pp 33-45, 2007.
19. L. Bascetta, and P. Rocco, "Modelling flexible manipulators with motors at the joints," Mathematical and Computer Modeling of Dynamical Systems, vol. 8, no. 2, pp. 157–183, 2002. [DOI:10.1076/mcmd.8.2.157.8593]
20. W. H. Chen, "Nonlinear disturbance observer-enhanced dynamic inversion control of missiles," Journal of Guidance, Control and Dynamics, vol. 26, no, 1, pp. 161–166, 2003. [DOI:10.2514/2.5027]
21. V. S. Deshpande, B. Mohan, P. D. Shendge, and S. B. Phadke, "Disturbance observer based sliding mode control of active suspension systems," Journal of Sound and Vibration, vol. 333, pp. 2281-2296, 2014. [DOI:10.1016/j.jsv.2014.01.023]
22. W. F. Trench, Introduction to Real Analysis, Pearson Education, 2003
23. M. Corless, and G. Leitman, "Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems," IEEE Transactions on Automatic Control, vol. 26, no. 5, pp. 1139–1144, 1981. [DOI:10.1109/TAC.1981.1102785]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.