BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Salimi Tari R, Moarefianpour A. Observer-Based Tracking Control Design for a Class of Fuzzy Polynomial Systems. JoC. 2018; 12 (1) :1-11

URL: http://joc.kntu.ac.ir/article-1-484-en.html

URL: http://joc.kntu.ac.ir/article-1-484-en.html

In this paper tracking control law design for a class of polynomial fuzzy systems is considered. The control law consists of an observer and a state feedback. A polynomial fuzzy observer estimates the state vector of the plant, and then the estimated state vector is employed by a polynomial feedback gain to fulfill the control law. The polynomial fuzzy control law leads the state vector of the plant to track the state vector of a stable reference model subject to an performance. Sufficient conditions for determination of the control law parameters will be presented in the form of an SOS program. Additionally simulation results are presented to show the merits of the proposed control design approach.

Type of Article: Research paper |
Subject:
Special

Received: 2017/05/16 | Accepted: 2017/10/5 | Published: 2018/02/23

Received: 2017/05/16 | Accepted: 2017/10/5 | Published: 2018/02/23

1. Z. Wang, R. Lu, and H. Wang, "Finite-Time Trajectory Tracking Control of a Class of Nonlinear Discrete-Time Systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, pp. 1679-1687, 2017. [DOI:10.1109/TSMC.2017.2663523]

2. Y. F. Gao, X. M. Sun, C. Wen, and W. Wang, "Adaptive Tracking Control for a Class of Stochastic Uncertain Nonlinear Systems With Input Saturation," IEEE Transactions on Automatic Control, vol. 62, pp. 2498-2504, 2017. [DOI:10.1109/TAC.2016.2600340]

3. H. Yang, X. Fan, P. Shi, and C. Hua, "Nonlinear Control for Tracking and Obstacle Avoidance of a Wheeled Mobile Robot With Nonholonomic Constraint," IEEE Transactions on Control Systems Technology, vol. 24, pp. 741-746, 2016.

4. G. Wen, W. Yu, Y. Xia, X. Yu, and J. Hu, "Distributed Tracking of Nonlinear Multiagent Systems Under Directed Switching Topology: An Observer-Based Protocol," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, pp. 869-881, 2017. [DOI:10.1109/TSMC.2016.2564929]

5. H. O. Wang, K. Tanaka, and M. F. Griffin, "An approach to fuzzy control of nonlinear systems: stability and design issues," IEEE Transactions on Fuzzy Systems, vol. 4, pp. 14-23, 1996. [DOI:10.1109/91.481841]

6. K. Tanaka and H. O. Wang, "Fuzzy regulators and fuzzy observers: a linear matrix inequality approach," in Proceedings of the 36th IEEE Conference on Decision and Control, 1997, pp. 1315-1320 vol.2. [DOI:10.1109/CDC.1997.657640]

7. K. Tanaka, T. Ikeda, and H. O. Wang, "Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs," IEEE Transactions on Fuzzy Systems, vol. 6, pp. 250-265, 1998. [DOI:10.1109/91.669023]

8. M. C. M. Teixeira, E. Assunção, and H. C. Pietrobom, "On relaxed LMI-based designs for fuzzy regulators and fuzzy observers," in 2001 European Control Conference (ECC), 2001, pp. 120-125.

9. M. C. M. Teixeira, E. Assuncao, and R. G. Avellar, "On relaxed LMI-based designs for fuzzy regulators and fuzzy observers," IEEE Transactions on Fuzzy Systems, vol. 11, pp. 613-623, 2003. [DOI:10.1109/TFUZZ.2003.817840]

10. T. Chung-Shi, C. Bor-Sen, and U. Huey-Jian, "Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model," IEEE Transactions on Fuzzy Systems, vol. 9, pp. 381-392, 2001. [DOI:10.1109/91.928735]

11. G. H. Chang and J. C. Wu, "Robust Tracking Control Design for Nonlinear Systems via Fuzzy Observer," in 2012 Fifth International Symposium on Computational Intelligence and Design, 2012, pp. 366-369. [DOI:10.1109/ISCID.2012.243]

12. M. H. Asemani and V. J. Majd, "A robust H∞ observer-based controller design for uncertain T–S fuzzy systems with unknown premise variables via LMI," Fuzzy Sets and Systems, vol. 212, pp. 21-40, 2013. [DOI:10.1016/j.fss.2012.07.008]

13. C. Lin, Q.-G. Wang, and T. Heng Lee, "Improvement on observer-based control for T–S fuzzy systems," Automatica, vol. 41, pp. 1651-1656, 2005. [DOI:10.1016/j.automatica.2005.04.004]

14. C.-S. Tseng and C.-K. Hwang, "Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances," Fuzzy Sets and Systems, vol. 158, pp. 164-179, 2007. [DOI:10.1016/j.fss.2006.09.014]

15. H. Dahmani, O. Pagès, A. E. Hajjaji, and N. Daraoui, "Observer-Based Robust Control of Vehicle Dynamics for Rollover Mitigation in Critical Situations," IEEE Transactions on Intelligent Transportation Systems, vol. 15, pp. 274-284, 2014. [DOI:10.1109/TITS.2013.2281135]

16. H. Dahmani, O. Pagès, and A. E. Hajjaji, "Observer-Based State Feedback Control for Vehicle Chassis Stability in Critical Situations," IEEE Transactions on Control Systems Technology, vol. 24, pp. 636-643, 2016.

17. P. Bergsten, R. Palm, and D. Driankov, "Observers for Takagi-Sugeno fuzzy systems," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 32, pp. 114-121, 2002. [DOI:10.1109/3477.979966]

18. L. Li, S. X. Ding, J. Qiu, Y. Yang, and D. Xu, "Fuzzy Observer-Based Fault Detection Design Approach for Nonlinear Processes," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. PP, pp. 1-12, 2016.

19. L. Li, S. X. Ding, J. Qiu, and Y. Yang, "Real-Time Fault Detection Approach for Nonlinear Systems and its Asynchronous T-S Fuzzy Observer-Based Implementation," IEEE Transactions on Cybernetics, vol. 47, pp. 283-294, 2017.

20. Y. Wu, J. Dong, X. J. Li, and G. H. Yang, "A new fault detection observer scheme for T-S fuzzy systems with unmeasurable variables," in 2016 12th World Congress on Intelligent Control and Automation (WCICA), 2016, pp. 120-125. [DOI:10.1109/WCICA.2016.7578733]

21. Y. Yang, S. X. Ding, and L. Li, "On observer-based fault detection for nonlinear systems," Systems & Control Letters, vol. 82, pp. 18-25, 2015. [DOI:10.1016/j.sysconle.2015.05.004]

22. L. Li, S. X. Ding, Y. Yang, and Y. Zhang, "Robust fuzzy observer-based fault detection for nonlinear systems with disturbances," Neurocomputing, vol. 174, Part B, pp. 767-772, 2016.

23. T. Agustinah, A. Jazidie, M. Nuh, and D. Haiping, "Fuzzy tracking control design using observer-based stabilizing compensator for nonlinear systems," in 2010 International Conference on System Science and Engineering, 2010, pp. 275-280. [DOI:10.1109/ICSSE.2010.5551718]

24. K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, "A Sum of Squares Approach to Stability Analysis of Polynomial Fuzzy Systems," in 2007 American Control Conference, 2007, pp. 4071-4076. [DOI:10.1109/ACC.2007.4282579]

25. K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, "Stabilization of Polynomial Fuzzy Systems via a Sum of Squares Approach," in 2007 IEEE 22nd International Symposium on Intelligent Control, 2007, pp. 160-165. [DOI:10.1109/ISIC.2007.4450878]

26. K. Tanaka, H. Ohtake, and H. O. Wang, "Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, pp. 561-567, 2009. [DOI:10.1109/TSMCB.2008.2006639]

27. K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, "A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems," IEEE Transactions on Fuzzy Systems, vol. 17, pp. 911-922, 2009. [DOI:10.1109/TFUZZ.2008.924341]

28. A. Sala and C. Arino, "Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach," IEEE Transactions on Fuzzy Systems, vol. 17, pp. 1284-1295, 2009. [DOI:10.1109/TFUZZ.2009.2029235]

29. K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O. Wang, "Polynomial Fuzzy Observer Designs: A Sum-of-Squares Approach," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, pp. 1330-1342, 2012. [DOI:10.1109/TSMCB.2012.2190277]

30. A. Sala, J. L. Pitarch, M. Bernal, A. Jaadari, and T. M. Guerra, "Fuzzy Polynomial observers," IFAC Proceedings Volumes, vol. 44, pp. 12772-12776, 2011. [DOI:10.3182/20110828-6-IT-1002.02441]

31. C. Liu, H. K. Lam, X. Ban, and X. Zhao, "Design of polynomial fuzzy observer–controller with membership functions using unmeasurable premise variables for nonlinear systems," Information Sciences, vol. 355–356, pp. 186-207, 2016. [DOI:10.1016/j.ins.2016.03.038]

32. H. Han, J. Chen, and H. R. Karimi, "State and disturbance observers-based polynomial fuzzy controller," Information Sciences, vol. 382–383, pp. 38-59, 2017. [DOI:10.1016/j.ins.2016.12.006]

33. S. Prajna, A. Papachristodoulou, and W. Fen, "Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach," in 2004 5th Asian Control Conference (IEEE Cat. No.04EX904), 2004, pp. 157-165 Vol.1.

34. A. Papachristodoulou and S. Prajna, "A tutorial on sum of squares techniques for systems analysis," in Proceedings of the 2005, American Control Conference, 2005., 2005, pp. 2686-2700 vol. 4. [DOI:10.1109/ACC.2005.1470374]

35. F. Delmotte, M. Dambrine, S. Delrot, and S. Lalot, "Fouling detection in a heat exchanger: A polynomial fuzzy observer approach," Control Engineering Practice, vol. 21, pp. 1386-1395, 2013. [DOI:10.1016/j.conengprac.2013.06.004]

36. H. K. Lam and H. Li, "Output-Feedback Tracking Control for Polynomial Fuzzy-Model-Based Control Systems," IEEE Transactions on Industrial Electronics, vol. 60, pp. 5830-5840, 2013. [DOI:10.1109/TIE.2012.2229679]

37. Z. Chen, B. Zhang, H. Li, and J. Yu, "Tracking control for polynomial fuzzy networked systems with repeated scalar nonlinearities," Neurocomputing, vol. 171, pp. 185-193, 2016. [DOI:10.1016/j.neucom.2015.06.030]

38. S. Prajna, A. Papachristodoulou, and P. A. Parrilo, "Introducing SOSTOOLS: a general purpose sum of squares programming solver," in Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 2002, pp. 741-746 vol.1. [DOI:10.1109/CDC.2002.1184594]

39. S. Boyd. et. al., Linear Matrix Inequalities in System and Control Theory, in Applied Mathematics, vol. 15, PHL:SIAM, 1994.

40. C.-W. Park, C.-H. Lee, and M. Park, "Design of an adaptive fuzzy model based controller for chaotic dynamics in Lorenz systems with uncertainty," Information Sciences, vol. 147, pp. 245-266, 2002. [DOI:10.1016/S0020-0255(02)00271-2]

41. H. Ohtake, K. Tanaka, and H. O. Wang, "Fuzzy modeling via sector nonlinearity concept," in Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), 2001, pp. 127-132. [DOI:10.1109/NAFIPS.2001.944239]

Send email to the article author