Volume 12, Issue 4 (Journal of Control, V.12, N.4 Winter 2019)                   JoC 2019, 12(4): 23-33 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi S H, Alfi A. Doppler and Bearing Tracking using Adaptive Modified Covariance Extended Kalman Filter. JoC 2019; 12 (4) :23-33
URL: http://joc.kntu.ac.ir/article-1-493-en.html
1- Shahrood University
Abstract:   (6447 Views)

The goal of the Doppler and Bearing Tracking (DBT) as a kind of passive target tracking problem is to estimate the position and velocity of the target using its transmitted signal. The main problem of this kind of target tracking is nonlinearity of the measurement equations. In order to solve this problem, different approaches have been reported in the literature, such as extended Kalman filter. However, bias and dependence on the initial conditions are the key shortcomings of such filters. In this paper, first, a novel technique is proposed to provide an appropriate initial condition for the filter. Then, inspired by the modified covariance extended Kalman filter, a new adaptive extended Kalman filter is introduced. Here, the measurement and the process noise covariances are updated simultaneously for reducing the bias effects. Finally, the performance of the proposed filter is compared with the standard extended Kalman filter, adaptive extended Kalman filter and unscented Kalman filter. Results show the good performance of the proposed filter in the problem under study

Full-Text [PDF 4195 kb]   (2205 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2017/06/21 | Accepted: 2018/06/21 | Published: 2019/05/4

1. [1] Passerieux, J.M., Pillon, D., Blanc-Benon, P. and Jaufret, C., 1988. Target motion analysis with bearings and frequencies measurements. In Signals, Systems and Computers, 1988. Twenty-Second Asilomar Conference on (Vol. 1, pp. 458-462).
2. [2] Rosenqvist, A., 1996. Asymptotic theory for a two-step pseudo-linear Doppler-bearing tracker. Computational statistics & data analysis, 21(6), pp. 647-660. [DOI:10.1016/0167-9473(95)00034-8]
3. [3] Passerieux, J.M., Pillon, D., Blanc-Benon, P. and Jauffret, C., 1989, May. Target motion analysis with bearings and frequencies measurements via instrumental variable estimator (passive sonar). In Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989 International Conference on (pp. 2645-2648).
4. [4] Tao, X.J., Zou, C.R. and He, Z.Y., 1996. Passive target tracking using maximum likelihood estimation. IEEE Transactions on Aerospace and Electronic Systems, 32(4), pp.1348-1354. [DOI:10.1109/7.543855]
5. [5] Chan, Y.T. and Rudnicki, S.W., 1992. Bearings-only and Doppler-bearing tracking using instrumental variables. IEEE Transactions on Aerospace and Electronic Systems, 28(4), pp. 1076-1083. [DOI:10.1109/7.165369]
6. [6] Ho, K.C. and Chan, Y.T., 2006. An asymptotically unbiased estimator for bearings-only and Doppler-bearing target motion analysis. IEEE Transactions on Signal Processing, 54(3), pp. 809-822. [DOI:10.1109/TSP.2005.861776]
7. [7] Zhan, R. and Wan, J., 2007. Iterated unscented Kalman filter for passive target tracking. IEEE Transactions on Aerospace and Electronic Systems, 43(3). [DOI:10.1109/TAES.2007.4383605]
8. [8] Santhosh, M.N., Rao, S.K., Das, R.P. and Raju, K.L., 2015. Underwater target tracking using unscented Kalman Filter. Indian Journal of Science and Technology, 8(31), DOI: 10.17485/ijst/2015/v8i31/77054. [DOI:10.17485/ijst/2015/v8i31/77054]
9. [9] Koteswara Rao, S., 2010. Doppler-bearing passive target tracking using a parameterized unscented kalman filter. IETE Journal of Research, 56(1), pp. 69-75. [DOI:10.4103/0377-2063.61267]
10. [10] Quan, H.W., 2014. Target Tracking Using Extended Kalman Filter with Bearing and Doppler Measurements. In Applied Mechanics and Materials (Vol. 529, pp. 379-382). [DOI:10.4028/www.scientific.net/AMM.529.379]
11. [11] Teulière, V. and Brun, O., 2003. Parallelisation of the particle filtering technique and application to doppler-bearing tracking of maneuvering sources. Parallel Computing, 29(8), pp. 1069-1090. [DOI:10.1016/S0167-8191(03)00090-5]
12. [12] Narasimhappa, M., Sabat, S.L. and Nayak, J., 2016. Fiber-optic gyroscope signal denoising using an adaptive robust Kalman filter. IEEE Sensors Journal, 16(10), pp. 3711-3718. [DOI:10.1109/JSEN.2016.2535396]
13. [13] Wang, H., Deng, Z., Feng, B., Ma, H. and Xia, Y., 2017. An adaptive Kalman filter estimating process noise covariance. Neurocomputing, 223, pp. 12-17. [DOI:10.1016/j.neucom.2016.10.026]
14. [14] Hashlamon, I. and Erbatur, K., 2016. An improved real-time adaptive Kalman filter with recursive noise covariance updating rules. Turkish Journal of Electrical Engineering & Computer Sciences, 24(2), pp. 524-540. [DOI:10.3906/elk-1309-60]
15. [15] Xi, Y., Li, Z., Zeng, X. and Tang, X., 2017. Detection of voltage Sag using an adaptive extended Kalman filter based on Maximum Likelihood. Journal of Electrical Engineering & Technology, 12(3), pp. 1016-1026. [DOI:10.5370/JEET.2017.12.3.1016]
16. [16] محمدی مقداد، قلی‌زاده نرم حسین، 1395. تطبيق کوواريانس‌هاي نويز فيلتر کالمن توسعه‌يافته در رديابي هدف از روي سمت به روش بازگشتي غيرمستقيم، مجله کنترل، جلد10، صفحه 55-72.
17. [17] Liu, X., Liu, H.J., Tang, Y.G., Gao, Q. and Chen, Z.M., 2014. Fuzzy adaptive unscented Kalman filter control of epileptiform spikes in a class of neural mass models. Nonlinear Dynamics, 76(2), pp. 1291-1299. [DOI:10.1007/s11071-013-1210-3]
18. [18] Deng, Z., Yang, L., Cai, Y. and Deng, H., 2016. Online identification with reliability criterion and state of charge estimation based on a fuzzy adaptive extended Kalman filter for lithium-ion batteries. Energies, 9(6), p. 472. [DOI:10.3390/en9060472]
19. [19] Li, J., Song, N., Yang, G. and Jiang, R., 2016. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles. Review of Scientific Instruments, 87(7), pp. 075118. [DOI:10.1063/1.4959561]
20. [20] da Silva, A.L. and da Cruz, J.J., 2016. Fuzzy adaptive extended Kalman filter for UAV INS/GPS data fusion. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(6), pp. 1671-1688. [DOI:10.1007/s40430-016-0509-7]
21. [21] Hajiyev, C. and Soken, H.E., 2016. Fault tolerant estimation of UAV dynamics via robust adaptive Kalman filter. In Complex Systems, Part of the Studies in Systems, Decision and Control, vol. 55, pp. 369-394. Springer. [DOI:10.1007/978-3-319-28860-4_17]
22. [22] Fucheng, G., Zhongkang, S. and Kan, H., 2003. A modified covariance extended Kalman filtering algorithm in passive location. In Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings IEEE International Conference on (Vol. 1, pp. 307-311).
23. [23] Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1), pp.35-45. [DOI:10.1115/1.3662552]
24. [24] Haupt, R.L., 1995. An introduction to genetic algorithms for electromagnetics. IEEE Antennas and Propagation Magazine, 37(2), pp. 7-15. [DOI:10.1109/74.382334]
25. [25] Assa, A. and Plataniotis, K.N., 2017. Adaptive Kalman filtering by covariance sampling. IEEE Signal Processing Letters, 24(9), pp. 1288-1292. [DOI:10.1109/LSP.2017.2724848]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb