1. [1] P. Siewniak and B. Grzesik, "A generalized geometrical piecewise‐affine model of DC‐DC power electronic converters," International Journal of Circuit Theory and Applications, vol. 43, pp. 342-373, 2015. [
DOI:10.1002/cta.1945]
2. [2] P. Siewniak and B. Grzesik, "The piecewise‐affine model of buck converter suitable for practical stability analysis," International Journal of Circuit Theory and Applications, vol. 43, pp. 3-21, 2015. [
DOI:10.1002/cta.1915]
3. [3] کاردهی مقدم ریحانه، پریز ناصر، مدیر شانه چی حسن، وحیدیان کامیاد علی. افزایش زمان بحرانی سیستمهای غیر خطی بوسیله گسترش جهتدار ناحیه جذب. مجله کنترل. ۱۳۸۹; ۴ (۲) :۱-۱۰.
4. [4] S. Anbu and N. Jaya, "Design of gain scheduling adaptive control for continuous stirred tank reactor," International Journal of Automation and Control, vol. 8, pp. 141-157, 2014. [
DOI:10.1504/IJAAC.2014.063360]
5. [5] A. Chakraborty, P. Seiler, and G. J. Balas, "Nonlinear region of attraction analysis for flight control verification and validation," Control Engineering Practice, vol. 19, pp. 335-345, 2011. [
DOI:10.1016/j.conengprac.2010.12.001]
6. [6] M. L. Matthews and C. M. Williams, "Region of attraction estimation of biological continuous Boolean models," in Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on, 2012, pp. 1700-1705. [
DOI:10.1109/ICSMC.2012.6377982]
7. [7] S. Sundar, "Effect of Elevated Carbon Dioxide Concentration on Plant Growth: A Mathematical Model," American Journal of Applied Mathematics and Statistics, vol. 3, pp. 59-67, 2015.
8. [8] J. Haddad and N. Geroliminis, "On the stability of traffic perimeter control in two-region urban cities," Transportation Research Part B: Methodological, vol. 46, pp. 1159-1176, 2012. [
DOI:10.1016/j.trb.2012.04.004]
9. [9] A. Bemporad, "Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form," IEEE Transactions on Automatic Control, vol. 49, pp. 832-838, 2004. [
DOI:10.1109/TAC.2004.828315]
10. [10] ملااحمدیان کاسب حامد، کریم پور علی، پریز ناصر. سیستم های تکهای خطی تبار مستقیم: کلاس جدیدی از سیستمهای هایبرید با دینامیکهای خطی تبار و مرزهای کلیدزنی قابل تنظیم. مجله کنترل. ۱۳۹۱; ۶ (۱) :۲۱-۲۹.
11. [11] N. Eghbal, N. Pariz, and A. Karimpour, "Uniform modeling of parameter dependent nonlinear systems," Journal of Zhejiang University SCIENCE C, vol. 13, pp. 850-858, 2012. [
DOI:10.1631/jzus.C1200096]
12. [12] کشوری خور هادی، کریم پور علی، پریز ناصر. شناسائی سیستم های سوئیچ شونده خطی با استفاده از نگاشت معادلات خطی همزمان. مجله کنترل. ۱۳۹۳; ۸ (۱) :۲۱-۳۰.
13. [13] J. H. Richter, W. Heemels, N. van de Wouw, and J. Lunze, "Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking," Automatica, vol. 47, pp. 678-691, 2011. [
DOI:10.1016/j.automatica.2011.01.048]
14. [14] L. Khodadadi, B. Samadi, and H. Khaloozadeh, "Estimation of region of attraction for polynomial nonlinear systems: A numerical method," ISA transactions, 2013. [
DOI:10.1016/j.isatra.2013.08.005]
15. [15] H. K. Khalil and J. Grizzle, Nonlinear systems vol. 3: Prentice hall Upper Saddle River, 2002.
16. [16] Y. Chen, Y. Sun, C.-S. Tang, Y.-G. Su, and A. P. Hu, "Characterizing regions of attraction for piecewise affine systems by continuity of discrete transition functions," Nonlinear Dynamics, vol. 90, pp. 2093-2110, 2017. [
DOI:10.1007/s11071-017-3786-5]
17. [17] Y. Chen, Y. Sun, C. Tang, Y. Su, and A. P. Hu, "Computing Regions of Stability for Limit Cycles of Piecewise Affine Systems," Information Technology And Control, vol. 46, pp. 459-469, 2017. [
DOI:10.5755/j01.itc.46.4.16072]
18. [18] M. Johansson and A. Rantzer, "Computation of piecewise quadratic Lyapunov functions for hybrid systems," IEEE transactions on automatic control, vol. 43, pp. 555-559, 1998. [
DOI:10.1109/9.664157]
19. [19] B. Samadi and L. Rodrigues, "A unified dissipativity approach for stability analysis of piecewise smooth systems," Automatica, vol. 47, pp. 2735-2742, 2011. [
DOI:10.1016/j.automatica.2011.09.018]
20. [20] H. Nakada and K. Takaba, "Local stability analysis of piecewise affine systems," Rn, vol. 10, p. 1, 2003. [
DOI:10.23919/ECC.2003.7084935]
21. [21] R. Iervolino, F. Vasca, and L. Iannelli, "Cone-copositive piecewise quadratic lyapunov functions for conewise linear systems," IEEE Transactions on Automatic Control, vol. 60, pp. 3077-3082, 2015. [
DOI:10.1109/TAC.2015.2409933]
22. [22] M. Johansson, "Analysis of piecewise linear system via convex optimization-a unifying approach," in Proceedings of the 1999 IFAC World Congress, 1999, pp. 521-526.
23. [23] M. K.-J. Johansson, Piecewise linear control systems: a computational approach vol. 284: Springer, 2003.
24. [24] J. Xu and L. Xie, "Homogeneous polynomial Lyapunov functions for piecewise affine systems," in American Control Conference, 2005. Proceedings of the 2005, 2005, pp. 581-586.
25. [25] N. Eghbal, N. Pariz, and A. Karimpour, "Discontinuous piecewise quadratic Lyapunov functions for planar piecewise affine systems," Journal of Mathematical Analysis and Applications, vol. 399, pp. 586-593, 2013. [
DOI:10.1016/j.jmaa.2012.09.054]
26. [26] T. González and M. Bernal, "Progressively better estimates of the domain of attraction for nonlinear systems via piecewise Takagi-Sugeno models: Stability and stabilization issues," Fuzzy Sets and Systems, 2015. [
DOI:10.1016/j.fss.2015.11.010]
27. [27] S. Gering, L. Eciolaza, J. Adamy, and M. Sugeno, "A piecewise approximation approach to nonlinear systems: Stability and region of attraction," IEEE Transactions on Fuzzy Systems, vol. 23, pp. 2231-2244, 2015. [
DOI:10.1109/TFUZZ.2015.2417870]
28. [28] R. Iervolino, D. Tangredi, and F. Vasca, "Lyapunov stability for piecewise affine systems via cone-copositivity," Automatica, vol. 81, pp. 22-29, 2017. [
DOI:10.1016/j.automatica.2017.03.011]
29. [29] A.-T. Nguyen, M. Sugeno, V. Campos, and M. Dambrine, "LMI-based stability analysis for piecewise multi-affine systems," IEEE Transactions on Fuzzy Systems, vol. 25, pp. 707-714, 2017. [
DOI:10.1109/TFUZZ.2016.2566798]
30. [30] L. Rodrigues and S. Boyd, "Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization," Systems & Control Letters, vol. 54, pp. 835-853, 2005. [
DOI:10.1016/j.sysconle.2005.01.002]
31. [31] K. Liu, Y. Yao, D. Sun, and V. Balakrishnan, "Improved state feedback controller synthesis for piecewise-linear systems," International Journal of Innovative Computing, Information and Control, vol. 8, pp. 6945-6957, 2012.
32. [32] A. Benine-Neto, S. Mammar, B. Lusetti, and S. Scalzi, "Piecewise affine control for lane departure avoidance," Vehicle System Dynamics, vol. 51, pp. 1121-1150, 2013. [
DOI:10.1080/00423114.2013.783220]
33. [33] N. Dadkhah and L. Rodrigues, "Non-fragile state-feedback control of uncertain piecewise-affine slab systems with input constraints: a convex optimisation approach," IET Control Theory & Applications, vol. 8, pp. 626-632, 2014. [
DOI:10.1049/iet-cta.2013.0202]
34. [34] J. Raouf and L. Rodrigues, "Stability and stabilization of piecewise‐affine slab systems subject to Wiener process noise," International Journal of Robust and Nonlinear Control, vol. 25, pp. 949-960, 2015. [
DOI:10.1002/rnc.3117]
35. [35] H. Razavi, K. Merat, H. Salarieh, A. Alasty, and A. Meghdari, "Observer based minimum variance control of uncertain piecewise affine systems subject to additive noise," Nonlinear Analysis: Hybrid Systems, vol. 19, pp. 153-167, 2016. [
DOI:10.1016/j.nahs.2015.09.002]
36. [36] Y. Eren, J. Shen, and K. Camlibel, "Quadratic stability and stabilization of bimodal piecewise linear systems," Automatica, vol. 50, pp. 1444-1450, 2014. [
DOI:10.1016/j.automatica.2014.03.009]
37. [37] M. di Bernardo, U. Montanaro, R. Ortega, and S. Santini, "Extended hybrid model reference adaptive control of piecewise affine systems," Nonlinear Analysis: Hybrid Systems, vol. 21, pp. 11-21, 2016. [
DOI:10.1016/j.nahs.2015.12.003]
38. [38] M. Rubagotti, L. Zaccarian, and A. Bemporad, "A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains," International Journal of Control, vol. 89, pp. 950-959, 2016. [
DOI:10.1080/00207179.2015.1108456]
39. [39] P. Li, J. Lam, and K. C. Cheung, "Stability, stabilization and L2-gain analysis of periodic piecewise linear systems," Automatica, vol. 61, pp. 218-226, 2015. [
DOI:10.1016/j.automatica.2015.08.024]
40. [40] L. Rodrigues, Dynamic output feedback controller synthesis for piecewise-affine systems: Stanford University, 2002.
41. [41] S. Pettersson and B. Lennartson, "Exponential stability of hybrid systems using piecewise quadratic Lyapunov functions resulting in LMIs," in IFAC, 14th Triennial World Congress, Beijing, PR China, 1999. [
DOI:10.1016/S1474-6670(17)56820-2]
42. [42] J. P. LaSalle and S. Lefschetz, Stability by Liapunov's direct method: with applications vol. 4: Academic Press New York, 1961.
43. [43] O. Hachicho, "A novel LMI-based optimization algorithm for the guaranteed estimation of the domain of attraction using rational Lyapunov functions," Journal of the Franklin Institute, vol. 344, pp. 535-552, 2007. [
DOI:10.1016/j.jfranklin.2006.02.032]
44. [44] G. Chesi, Domain of attraction: analysis and control via SOS programming vol. 415: Springer Science & Business Media, 2011.
45. [45] M. Johansson, "Piecewise quadratic estimates of domains of attraction for linear systems with saturation," in CD-ROM of 15th IFAC World Congress, 2002. [
DOI:10.3182/20020721-6-ES-1901.00281]
46. [46] T. González and M. Bernal, "Progressively better estimates of the domain of attraction for nonlinear systems via piecewise Takagi-Sugeno models: Stability and stabilization issues," Fuzzy Sets and Systems, vol. 297, pp. 73-95, 2016. [
DOI:10.1016/j.fss.2015.11.010]
47. [47] J. Lofberg, "YALMIP: A toolbox for modeling and optimization in MATLAB," in Computer Aided Control Systems Design, 2004 IEEE International Symposium on, 2004, pp. 284-289.
48. [48] D. Henrion, J. Lofberg, M. Kocvara, and M. Stingl, "Solving polynomial static output feedback problems with PENBMI," in Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on, 2005, pp. 7581-7586.¬