Volume 13, Issue 3 (Journal of Control, V.13, N.3 Fall 2019)                   JoC 2019, 13(3): 51-70 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hadi Barhaghtalab M, Meigoli V, Ghaffari V. ANFIS+PID Hybrid Controller Design for Controlling of a 6-DOF Robot Manipulator and its Error Convergence Analysis. JoC 2019; 13 (3) :51-70
URL: http://joc.kntu.ac.ir/article-1-524-en.html
1- Department of Electrical Engineering, School of Engineering, Persian Gulf University, Bushehr
Abstract:   (7379 Views)
In this paper, an ANFIS+PID hybrid control policy has been addressed to control a 6-degree-of freedom (6-DOF) robotic manipulator. Then its error convergence has been also evaluated. The ability to formulate and estimate the system uncertainties and disturbances along with system dynamics and rejecting the disturbances effect are some advantages of the proposed method in   comparing with the conventional ANFIS structures. The error convergence could not be proved in the ordinary ANFIS structures. But in the proposed method, the error convergence of the robot manipulator can be established under considering some mathematical conditions. The proposed control law is realized via parallel combination of ordinary ANFIS network and PID controller. The suggested method has been successfully applied in a 6-DOF robot manipulator system. Furthermore, in presence of uncertainties and  external  disturbances  error  convergence  would  be  justified  using  the Lyapunov-like  theorem and Barbalat lemma.
Full-Text [PDF 2410 kb]   (4388 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2017/09/22 | Accepted: 2018/07/24 | Published: 2019/12/31

1. [1] J. P. Kolhe, M. Shaheed, T. Chandar, and S. Talole, "Robust control of robot manipulators based on uncertainty and disturbance estimation," International Journal of Robust and Nonlinear Control, vol. 23, pp. 104-122, 2013. [DOI:10.1002/rnc.1823]
2. [2] A. Mishkat and N. Verma, "ROBUST CONTROL OF ROBOTIC MANIPULATOR," 2014.
3. [3] M. Mehdi Fateh and M. Baluchzadeh, "Discrete optimal control for robot manipulators," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33, pp. 423-444, 2013. [DOI:10.1108/COMPEL-10-2012-0204]
4. [4] A. Olivares and E. Staffetti, "Embedded optimal control of robot manipulators with passive joints," Mathematical Problems in Engineering, vol. 2015, 2015. [DOI:10.1155/2015/348178]
5. [5] Y. Yanling, "Model free adaptive control for robotic manipulator trajectory tracking," Open Automation and Control Systems Journal, vol. 7, pp. 358-365, 2015. [DOI:10.2174/1874444301507010358]
6. [6] H. Wang, "Adaptive control of robot manipulators with uncertain kinematics and dynamics," IEEE Transactions on Automatic Control, vol. 62, pp. 948-954, 2017. [DOI:10.1109/TAC.2016.2575827]
7. [7] Y. Zhao, "Study on Predictive Control for Trajectory Tracking of Robotic Manipulator," Journal of Engineering Science & Technology Review, vol. 7, 2014. [DOI:10.25103/jestr.071.08]
8. [8] I. Cervantes and J. Alvarez-Ramirez, "On the PID tracking control of robot manipulators," Systems & control letters, vol. 42, pp. 37-46, 2001. [DOI:10.1016/S0167-6911(00)00077-3]
9. [9] V. Hernández‐Guzmán and J. Orrante‐Sakanassi, "Global PID Control of Robot Manipulators Equipped with PMSMs," Asian Journal of Control, 2018. [DOI:10.1080/00207179.2019.1590648]
10. [10] F. Piltan, S. Emamzadeh, Z. Hivand, F. Shahriyari, and M. Mirazaei, "PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses," International Journal of Robotics and Automation, vol. 3, pp. 106-150, 2012.
11. [11] F. Moldoveanu, "SLIDING MODE CONTROLLER DESIGN FOR ROBOT MANIPULATORS," Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I, vol. 7, p. 97, 2014.
12. [12] L.-X. Wang, A course in fuzzy systems: Prentice-Hall press, USA, 1999.
13. [13] F. Piltan, S. T. Haghighi, N. Sulaiman, I. Nazari, and S. Siamak, "Artificial control of PUMA robot manipulator: A-review of fuzzy inference engine and application to classical controller," International Journal of Robotics and Automation, vol. 2, pp. 401-425, 2011.
15. [15] M. Aghajarian, K. Kiani, and M. M. Fateh, "Design of Fuzzy Controller for Robot Manipulators Using Bacterial Foraging Optimization Algorithm," Journal of Intelligent Learning Systems and Applications, vol. 4, p. 53, 2012. [DOI:10.4236/jilsa.2012.41005]
16. [16] L. Fausett, Fundamentals of neural networks: architectures, algorithms, and applications: Prentice-Hall, Inc., 1994.
17. [17] L. Wang, T. Chai, and C. Yang, "Neural-network-based contouring control for robotic manipulators in operational space," IEEE Transactions on Control Systems Technology, vol. 20, pp. 1073-1080, 2012. [DOI:10.1109/TCST.2011.2147316]
18. [18] L. Yu, S. Fei, J. Huang, and Y. Gao, "Trajectory switching control of robotic manipulators based on RBF neural networks," Circuits, Systems, and Signal Processing, vol. 33, pp. 1119-1133, 2014. [DOI:10.1007/s00034-013-9682-4]
19. [19] L. Yu, S. Fei, J. Huang, Y. Li, G. Yang, and L. Sun, "Robust neural network control of robotic manipulators via switching strategy," Kybernetika, vol. 51, pp. 309-320, 2015. [DOI:10.14736/kyb-2015-2-0309]
20. [20] M. M. Fateh, S. M. Ahmadi, and S. Khorashadizadeh, "Adaptive RBF network control for robot manipulators," Journal of AI and Data Mining, vol. 2, pp. 159-166, 2014.
21. [21] P. Van Cuong and W. Y. Nan, "Adaptive trajectory tracking neural network control with robust compensator for robot manipulators," Neural Computing and Applications, vol. 27, pp. 525-536, 2016. [DOI:10.1007/s00521-015-1873-4]
22. [22] R.-J. Wai, Y.-C. Huang, Z.-W. Yang, and C.-Y. Shih, "Adaptive fuzzy-neural-network velocity sensorless control for robot manipulator position tracking," IET control theory & applications, vol. 4, pp. 1079-1093, 2010. [DOI:10.1049/iet-cta.2009.0166]
23. [23] B. O. Mushage, J. C. Chedjou, and K. Kyamakya, "Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation," Nonlinear Dynamics, vol. 87, pp. 2021-2037, 2017. [DOI:10.1007/s11071-016-3173-7]
24. [24] W. He and Y. Dong, "Adaptive fuzzy neural network control for a constrained robot using impedance learning," IEEE Transactions on Neural Networks and Learning Systems, 2017. [DOI:10.1109/TNNLS.2017.2665581]
25. [25] D. C. Theodoridis, Y. S. Boutalis, and M. A. Christodoulou, "A new adaptive neuro-fuzzy controller for trajectory tracking of robot manipulators," International Journal of Robotics and Automation, vol. 26, p. 64, 2011. [DOI:10.2316/Journal.206.2011.1.206-3401]
26. [26] A. Farrage and A. B. Sharkawy, "Experimental Investigation of an Adaptive Neuro-Fuzzy Control Scheme for Industrial Robots," J. Eng. Sci. Fac. Eng. Univ, vol. 42, pp. 703-721, 2014.
27. [27] S. M. Ahmadi and M. M. Fateh, "Robust control of electrically driven robots using adaptive uncertainty estimation," Computers & Electrical Engineering, vol. 56, pp. 674-687, 2016. [DOI:10.1016/j.compeleceng.2016.08.005]
28. [28] M. H. Barhaghtalab, H. Bayani, A. Nabaei, H. Zarrabi, and A. Amiri, "On The Design of The Robust Neuro-Adaptive Controller for Cable-driven Parallel Robots," Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, vol. 57, pp. 724-735, 2017. [DOI:10.7305/automatika.2017.02.1793]
29. [29] J.-S. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE transactions on systems, man, and cybernetics, vol. 23, pp. 665-685, 1993. [DOI:10.1109/21.256541]
30. [30] J.-S. Jang and C.-T. Sun, "Neuro-fuzzy modeling and control," Proceedings of the IEEE, vol. 83, pp. 378-406, 1995. [DOI:10.1109/5.364486]
31. [31] O. Bachir and A.-F. Zoubir, "Adaptive neuro-fuzzy inference system based control of puma 600 robot manipulator," International Journal of Electrical and Computer Engineering, vol. 2, p. 90, 2012. [DOI:10.11591/ijece.v2i1.116]
32. [32] F. Z. Baghli, Y. Lakhal, L. El Bakkali, and O. Hamdoun, "Design and simulation of Adaptive Neuro Fuzzy Inference System (ANFIS) controller for a robot manipulator," in Complex Systems (WCCS), 2014 Second World Conference on, 2014, pp. 298-303. [DOI:10.1109/ICoCS.2014.7060879]
33. [33] P. Agnihotri, V. Banga, and E. G. Singh, "ANFIS Based Forward and inverse Kinematics of Robot Manipulator with five Degree of Freedom," 2015.
34. [34] R. K. Gupta and S. Chauhan, "Comparision of PID controller & adaptive neuro fuzzy controller for robot manipulator," in Computational Intelligence and Computing Research (ICCIC), 2015 IEEE International Conference on, 2015, pp. 1-4. [DOI:10.1109/ICCIC.2015.7435761]
35. [35] J. Lin and C.-C. Lin, "Hybrid fuzzy position/force control by adaptive network-based fuzzy inference system for robot manipulator mounted on oscillatory base," Journal of Vibration and Control, vol. 21, pp. 1930-1945, 2015. [DOI:10.1177/1077546313503360]
36. [36] J.-J. E. Slotine and W. Li, Applied nonlinear control vol. 199: prentice-Hall Englewood Cliffs, NJ, 1991.
37. [37] M. Mansouri, M. Teshnehlab, and S. M. Aliyari, "Desiging Hierarchical Fuzzy Contoller with Feedback Error Learning based on Lyapunov FUNCTION for a Class of High Order Nonlinear Systems," 2015.
38. [38] F. A. Yaghmaie, F. Bakhshande, and H. D. Taghirad, "Feedback error learning control of trajectory tracking of nonholonomic mobile robot," in Electrical Engineering (ICEE), 2012 20th Iranian Conference on, 2012, pp. 889-893. [DOI:10.1109/IranianCEE.2012.6292479]
39. [39] S. Pezeshki, S. Badalkhani, and A. Javadi, "Performance Analysis of a Neuro-PID Controller Applied to a Robot Manipulator," International Journal of Advanced Robotic Systems, vol. 9, p. 163, 2012. [DOI:10.5772/51280]
40. [40] S. E. Shafiei and M. R. Soltanpour, "Neural network sliding-model-PID controller design for electrically driven robot manipulators," International Journal of Innovative Computing, Information and Control, vol. 7, pp. 511-524, 2011.
41. [41] W. Yu and J. Rosen, "Neural PID control of robot manipulators with application to an upper limb exoskeleton," IEEE Transactions on cybernetics, vol. 43, pp. 673-684, 2013. [DOI:10.1109/TSMCB.2012.2214381]
42. [42] M. I. AL-Saedi, H. Wu, and H. Handroos, "ANFIS And fuzzy tuning of PID controller for trajectory tracking of a flexible hydraulically driven parallel robot machine," Journal of Automation and Control Engineering, vol. 1, pp. 70-77, 2013. [DOI:10.12720/joace.1.2.70-77]
43. [43] F.-C. Liu, L.-H. Liang, and J.-J. Gao, "Fuzzy PID control of space manipulator for both ground alignment and space applications," International Journal of Automation and computing, vol. 11, pp. 353-360, 2014. [DOI:10.1007/s11633-014-0800-y]
44. [44] Y. Tao, J. Zheng, Y. Lin, T. Wang, H. Xiong, G. He, et al., "Fuzzy PID control method of deburring industrial robots," Journal of Intelligent & Fuzzy Systems, vol. 29, pp. 2447-2455, 2015. [DOI:10.3233/IFS-151945]
45. [45] R. H. Mohammed, F. Bendary, and K. Elserafi, "Trajectory Tracking Control for Robot Manipulator using Fractional Order-Fuzzy-PID Controller," International Journal of Computer Applications, vol. 134, 2016. [DOI:10.5120/ijca2016908155]
46. [46] J. Armendariz, V. Parra-Vega, R. García-Rodríguez, and S. Rosales, "Neuro-fuzzy self-tuning of PID control for semiglobal exponential tracking of robot arms," Applied Soft Computing, vol. 25, pp. 139-148, 2014. [DOI:10.1016/j.asoc.2014.08.037]
47. [47] S. Z. S. Al-Khayyt, "Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking," Al-Khwarizmi Engineering Journal, vol. 9, pp. 19-28, 2017.
48. [48] C.-T. Sun and J.-S. Jang, "A neuro-fuzzy classifier and its applications," in Fuzzy Systems, 1993., Second IEEE International Conference on, 1993, pp. 94-98.
49. [49] S. Labiod, M. S. Boucherit, and T. M. Guerra, "Adaptive fuzzy control of a class of MIMO nonlinear systems," Fuzzy sets and systems, vol. 151, pp. 59-77, 2005. [DOI:10.1016/j.fss.2004.10.009]
50. [50] L.-X. Wang, Adaptive fuzzy systems and control: design and stability analysis: Prentice-Hall, Inc., 1994.
51. [51] M. W. Spong and M. Vidyasagar, Robot dynamics and control: John Wiley & Sons, 2008.
52. [52] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and control: Springer Science & Business Media, 2010. [DOI:10.1007/978-1-84628-642-1]
53. [53] J.-X. Xu, C.-C. Hang, and C. Liu, "Parallel structure and tuning of a fuzzy PID controller," Automatica, vol. 36, pp. 673-684, 2000. [DOI:10.1016/S0005-1098(99)00192-2]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb