1. [1] Mohd Ali, J., et al.,'Review and classification of recent observers applied in chemical process systems'. Computers & Chemical Engineering, 2015. 76(0): p. 27-41. [
DOI:10.1016/j.compchemeng.2015.01.019]
2. [2] Luenberger, D.,'An introduction to observers'. Automatic Control, IEEE Transactions on, 1971. 16(6): p. 596-602. [
DOI:10.1109/TAC.1971.1099826]
3. [3] Postoyan, R. and D. Nešić,'On emulated nonlinear reduced-order observers for networked control systems'. Automatica, 2012. 48(4): p. 645-652. [
DOI:10.1016/j.automatica.2012.01.017]
4. [4] Chen, T., J. Morris, and E. Martin,'Particle filters for state and parameter estimation in batch processes'. Journal of Process Control, 2005. 15(6): p. 665-673. [
DOI:10.1016/j.jprocont.2005.01.001]
5. [5] Li, S., et al.,'Disturbance observer-based control: methods and applications'. 2014: CRC press.
6. [6] Theocharis, J. and V. Petridis,'Neural Network Observer'. vectors, 1994. 27.
7. [7] Gao, Z., X. Shi, and S.X. Ding,'Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation'. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008. 38(3): p. 875-880. [
DOI:10.1109/TSMCB.2008.917185]
8. [8] Gouzé, J.L., A. Rapaport, and M.Z. Hadj-Sadok,'Interval observers for uncertain biological systems'. Ecological Modelling, 2000. 133(1-2): p. 45-56. [
DOI:10.1016/S0304-3800(00)00279-9]
9. [9] Rapaport, A. and D. Dochain,'Interval observers for biochemical processes with uncertain kinetics and inputs'. Mathematical Biosciences, 2005. 193(2): p. 235-253. [
DOI:10.1016/j.mbs.2004.07.004]
10. [10] Moisan, M. and O. Bernard.'Robust interval observers for uncertain chaotic systems'. in 45th IEEE Conference on Decision and Control, San Diego, CA, USA. 2006. [
DOI:10.1109/CDC.2006.377682]
11. [11] Rami, M.A., C.H. Cheng, and C. de Prada.'Tight robust interval observers: An LP approach'. in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. 2008. [
DOI:10.1109/CDC.2008.4739280]
12. [12] McCarthy, P.J., C. Nielsen, and S.L. Smith,'Cardinality constrained robust optimization applied to a class of interval observers', in American Control Conference (ACC), 2014. 2014, IEEE. p. 5337-5342. [
DOI:10.1109/ACC.2014.6859149]
13. [13] Chebotarev, S., et al.,'Interval observers for continuous-time LPV systems with L1/L2 performance'. Automatica, 2015. 58: p. 82-89. [
DOI:10.1016/j.automatica.2015.05.009]
14. [14] Mazenc, F. and O. Bernard,'Interval observers for linear time-invariant systems with disturbances'. Automatica, 2011. 47(1): p. 140-147. [
DOI:10.1016/j.automatica.2010.10.019]
15. [15] Efimov, D., et al.,'Interval estimation for lpv systems applying high order sliding mode techniques'. Automatica, 2012. 48(9): p. 2365-2371. [
DOI:10.1016/j.automatica.2012.06.073]
16. [16] Atassi, A.N. and H.K. Khalil,'A separation principle for the stabilization of a class of nonlinear systems'. IEEE Transactions on Automatic Control, 1999. 44(9): p. 1672-1687. [
DOI:10.1109/9.788534]
17. [17] Efimov, D., T. Raissi, and A. Zolghadri,'Control of Nonlinear and LPV Systems: Interval Observer-Based Framework'. Automatic Control, IEEE Transactions on, 2013. 58(3): p. 773-778. [
DOI:10.1109/TAC.2013.2241476]
18. [18] Efimov, D., T. Raissi, and A. Zolghadri.'Stabilization of nonlinear uncertain systems based on interval observers'. in Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on. 2011. [
DOI:10.1109/CDC.2011.6160573]
19. [19] Cai, X., G. Lv, and W. Zhang,'Stabilisation for a class of non-linear uncertain systems based on interval observers'. IET Control Theory & Applications, 2012. 6(13): p. 2057-2062. [
DOI:10.1049/iet-cta.2011.0493]
20. [20] Zhongwei, H. and X. Wei,'Control of non-linear switched systems with average dwell time: interval observer-based framework'. Control Theory & Applications, IET, 2016. 10(1): p. 10-16. [
DOI:10.1049/iet-cta.2015.0285]
21. [21] Smith, H.L.,'Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems'. 2008: American Mathematical Soc. [
DOI:10.1090/surv/041]
22. [22] Polycarpou, M.M. and P.A. Ioannou,'A robust adaptive nonlinear control design'. Automatica, 1996. 32(3): p. 423-427. [
DOI:10.1016/0005-1098(95)00147-6]
23. [23] Liu, J.,'Sliding Mode Control Using MATLAB '. 1st ed. 2017: Academic Press. [
DOI:10.1016/B978-0-12-802575-8.00001-1]