دوره 14، شماره 1 - ( مجله کنترل، جلد 14، شماره 1، بهار 1399 )                   جلد 14 شماره 1,1399 صفحات 63-49 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشگاه صنعتی مالک اشتر
چکیده:   (6647 مشاهده)
طراحی سیستم هدایت و کنترل یکپارچه در اجسام پرنده یکی از زمینه‌های تحقیقاتی در حوزه هوافضا بوده که در سال‌های اخیر موردتوجه محققین قرارگرفته است. به دلیل غیرخطی بودن معادلات سینماتیکی و دینامیکی رهگیرهای آشیانه یاب در فاز نهایی و وجود نامعینی‌هایی ازجمله مانورهای هدف، اغتشاشات خارجی و تغییرات ضرایب آیرودینامیک، تئوری کنترل مد لغزشی یک روش مناسب برای طراحی سیستم هدایت و کنترل یکپارچه است. بزرگ‌ترین مشکل روش مد لغزشی، وجود نوسانات فرکانس بالا در سیگنال کنترل است که پیاده‌سازی این کنترل‌کننده را غیرممکن می‌سازد. یک روش برای هموارسازی سیگنال کنترل در روش مد لغزشی، استفاده از رؤیت گر است. در این مقاله با در اختیار داشتن تخمین اغتشاش و با استفاده از ساختاری متفاوت نسبت به روش مد لغزشی استاندارد، سیگنال کنترل کاملاً هموارشده است. همچنین همگرایی زمان محدود در حضور نامعینی تضمین‌شده است. سیستم هدایت و کنترل طراحی‌شده با استفاده از روش پیشنهادی در شبیه‌سازی کامپیوتری مورد ارزیابی قرارگرفته است.
متن کامل [PDF 794 kb]   (1948 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1397/2/6 | پذیرش: 1397/5/21 | انتشار: 1399/3/22

فهرست منابع
1. [1] P. Zarchan, Tactical and strategic missile guidance. American Institute of Aeronautics and Astronautics, 2012. [DOI:10.2514/4.868948]
2. [2] S. Shamaghdari, S.K.Y. Nikravesh, M.Haeri, "Integrated guidance and control of elastic flight vehicle based on robust MPC," International Journal of Robust and Nonlinear Control, vol. 25, no.15, 2015. [DOI:10.1002/rnc.3215]
3. [3] P. Menon, G. Sweriduk, and E. Ohlmeyer, "Optimal fixed-interval integrated guidance-control laws for hit-to-kill missiles," in AIAA Guidance, Navigation, and Control Conference, 2003, pp. 1-9: AIAA Reston, VA. [DOI:10.2514/6.2003-5579]
4. [4] N. F. Palumbo, B. E. Reardon, and R. A. Blauwkamp, "Integrated guidance and control for homing missiles," Johns Hopkins APL Technical Digest, vol. 25, no. 2, pp. 121-139, 2004.
5. [5] C.-F. Lin, J. Bibel, E. Ohlmeyer, and S. Malyevac, "Optimal design of integrated missile guidance and control," in AIAA and SAE, 1998 World Aviation Conference, 2007, p. 5519. [DOI:10.4271/985519]
6. [6] X. Sun, T. Chao, S. Wang, and M. Yang, "Review of studies on integrated guidance and control design approach," in Control and Decision Conference (CCDC), 2015 27th Chinese, 2015, pp. 3958-3963: IEEE. [DOI:10.1109/CCDC.2015.7162615]
7. [7] J.-J. E. Slotine and W. Li, Applied nonlinear control (no. 1). Prentice hall Englewood Cliffs, NJ, 1991.
8. [8] A. Levant and L. M. Fridman, "Accuracy of homogeneous sliding modes in the presence of fast actuators," IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 810-814, 2010. [DOI:10.1109/TAC.2010.2040512]
9. [9] A. Levant and M. Livne, "Exact differentiation of signals with unbounded higher derivatives," IEEE Transactions on Automatic Control, vol. 57, no. 4, pp. 1076-1080, 2012. [DOI:10.1109/TAC.2011.2173424]
10. [10] A. Levant, "Homogeneity approach to high-order sliding mode design," Automatica, vol. 41, no. 5, pp. 823-830, 2005. [DOI:10.1016/j.automatica.2004.11.029]
11. [11] S. Laghrouche, F. Plestan, and A. Glumineau, "Higher order sliding mode control based on integral sliding mode," Automatica, vol. 43, no. 3, pp. 531-537, 2007. [DOI:10.1016/j.automatica.2006.09.017]
12. [12] A. Levant and A. Michael, "Adjustment of high‐order sliding‐mode controllers," International Journal of Robust and Nonlinear Control, vol. 19, no. 15, pp. 1657-1672, 2009. [DOI:10.1002/rnc.1397]
13. [13] A. Levant, "Quasi-continuous high-order sliding-mode controllers," in Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, 2003, vol. 5, pp. 4605-4610: IEEE.
14. [14] A. Levant, A. Pridor, R. Gitizadeh, I. Yaesh, and J. Ben-Asher, "Aircraft pitch control via second-order sliding technique," Journal of Guidance Control and Dynamics, vol. 23, no. 4, pp. 586-594, 2000. [DOI:10.2514/2.4591]
15. [15] G. Bartolini, E. Punta, and T. Zolezzi, "Approximability properties for second-order sliding mode control systems," IEEE transactions on automatic control, vol. 52, no. 10, pp. 1813-1825, 2007. [DOI:10.1109/TAC.2007.906179]
16. [16] H. K. Khalil, Noninear Systems, Third Edition ed. (Prentice-Hall, Upper Saddle River). 2002.
17. [17] A. Ferrara and M. Rubagotti, "A sub-optimal second order sliding mode controller for systems with saturating actuators," IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1082-1087, 2009. [DOI:10.1109/TAC.2008.2010992]
18. [18] A. Polyakov and A. Poznyak, "Reaching time estimation for "super-twisting" second order sliding mode controller via Lyapunov function designing," IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1951-1955, 2009. [DOI:10.1109/TAC.2009.2023781]
19. [19] Y. Shtessel, J. Kochalummoottil, C. Edwards, and S. Spurgeon, "Continuous adaptive finite reaching time control and second-order sliding modes," IMA Journal of Mathematical Control and Information, vol. 30, no. 1, pp. 97-113, 2012. [DOI:10.1093/imamci/dns013]
20. [20] F. Plestan, E. Moulay, A. Glumineau, and T. Cheviron, "Robust output feedback sampling control based on second-order sliding mode," Automatica, vol. 46, no. 6, pp. 1096-1100, 2010. [DOI:10.1016/j.automatica.2010.03.004]
21. [21] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, "Smooth second-order sliding modes: Missile guidance application," Automatica, vol. 43, no. 8, pp. 1470-1476, 2007. [DOI:10.1016/j.automatica.2007.01.008]
22. [22] S. Mobayen, "An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems," Nonlinear Dynamics, vol. 82, no. 1-2, pp. 599-610, 2015. [DOI:10.1007/s11071-015-2180-4]
23. [23] F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak, "New methodologies for adaptive sliding mode control," International journal of control, vol. 83, no. 9, pp. 1907-1919, 2010. [DOI:10.1080/00207179.2010.501385]
24. [24] D. Lianos, Y. Shtessel, and I. Shkolnikov, "Integrated guidance-control system of a homing interceptor-Sliding mode approach," in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001, p. 4218. [DOI:10.2514/6.2001-4218]
25. [25] D. Chwa and J. Y. Choi, "Adaptive nonlinear guidance law considering control loop dynamics," IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1134-1143, 2003. [DOI:10.1109/TAES.2003.1261117]
26. [26] M. Idan, T. Shima, and O. M. Golan, "Integrated sliding mode autopilot-guidance for dual-control missiles," Journal of Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 1081-1089, 2007. [DOI:10.2514/1.24953]
27. [27] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, "Guidance and Control of Missile Interceptor using Second-Order Sliding Modes," IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 1, pp. 110-124, 2009. [DOI:10.1109/TAES.2009.4805267]
28. [28] C. Tournes and Y. Shtessel, "Integrated guidance and autopilot for dual controlled missiles using higher order sliding mode controllers and observers," in AIAA Guidance, Navigation and Control Conference and Exhibit, 2008, p. 7433. [DOI:10.2514/6.2008-7433]
29. [29] D. Chwa, J. Y. Choi, and S. G. Anavatti, "Observer-based adaptive guidance law considering target uncertainties and control loop dynamics," IEEE Transactions on Control Systems Technology, vol. 14, no. 1, pp. 112-123, 2006. [DOI:10.1109/TCST.2005.860529]
30. [30] Z. Pan, W. Wang, S. Xiong, and K. Lu, "Three-dimensional integrated guidance and control for slide to turn missile with input saturation," in Control and Decision Conference (CCDC), 2016 Chinese, 2016, pp. 2554-2559: IEEE. [DOI:10.1109/CCDC.2016.7531414]
31. [31] T.-W. Hwang and M.-J. Tahk, "Integrated backstepping design of missile guidance and control with robust disturbance observer," in SICE-ICASE, 2006. International Joint Conference, 2006, pp. 4911-4915: IEEE. [DOI:10.1109/SICE.2006.314847]
32. [32] Z.-e. Fan, D.-h. Yu, H.-c. Zhao, and W.-j. Gu, "Integrated backstepping guidance and control design with impact angle constraint," in 2011 International Conference in Electrics, Communication and Automatic Control Proceedings, 2012, pp. 1107-1113: Springer. [DOI:10.1007/978-1-4419-8849-2_141]
33. [33] Y. Shu and S. Tang, "Integrated robust dynamic inversion design of missile guidance and control based on nonlinear disturbance observer," in Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2012 4th International Conference on, 2012, vol. 2, pp. 42-45: IEEE. [DOI:10.1109/IHMSC.2012.106]
34. [34] S. He, T. Song, J. Wang, and D. Lin, "Disturbance observer-based robust integrated guidance and control design for tactical missiles," in Control and Automation (ICCA), 2016 12th IEEE International Conference on, 2016, pp. 461-466: IEEE. [DOI:10.1109/ICCA.2016.7505320]
35. [35] S. He, W. Wang, and J. Wang, "Three-dimensional multivariable integrated guidance and control design for maneuvering targets interception," Journal of the Franklin Institute, vol. 353, no. 16, pp. 4330-4350, 2016. [DOI:10.1016/j.jfranklin.2016.08.008]
36. [36] G. M. Siouris, Missile guidance and control systems. Springer Science & Business Media, 2004. [DOI:10.1115/1.1849174]
37. [37] S. Xingling and W. Honglun, "Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO," ISA transactions, vol. 57, pp. 10-22, 2015. [DOI:10.1016/j.isatra.2015.02.013]
38. [38] M. Ran, Q. Wang, D. Hou, and C. Dong, "Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control," Chinese Journal of Aeronautics, vol. 27, no. 3, pp. 634-642, 2014. [DOI:10.1016/j.cja.2014.04.007]
39. [39] H. Yan and H. Ji, "Integrated guidance and control based on backstepping and input-to-state stability," in Control Conference (CCC), 2011 30th Chinese, 2011, pp. 654-658: IEEE.
40. [40] V. Behnamgol, A. R. Vali, A. Mohammadi, "A new observer-based chattering-free sliding mode guidance law," Institution of Mechanical Engineers, vol. 230, no. 8, pp.1486-1495, 2015. [DOI:10.1177/0954410015612499]
41. [41] G. M. Marks, Y. Shtessel, H. Gratt, and I. Shkolnikov, "Effects of high order sliding mode guidance and observers on hit-to-kill interceptions," sign, vol. 3, no. 1, p. 0, 2001.
42. [42] Y. B. Shtessel, I. A. Shkolnikov, and M. D. Brown, "An Asymptotic Second-Order Smooth Sliding Mode Control," Asian journal of control, vol. 5, no. 4, pp. 498-504, 2003. [DOI:10.1111/j.1934-6093.2003.tb00167.x]
43. [43] H. Zhou, S. Song, J. Song, and J. Niu, "Design of second-order sliding mode guidance law based on the nonhomogeneous disturbance observer," Journal of Control Science and Engineering, vol. 2014, p. 19, 2014. [DOI:10.1155/2014/890824]
44. [44] W. Wang, S. Xiong, X. Liu, S. Wang, and L. Ma, "Adaptive nonsingular terminal sliding mode guidance law against maneuvering targets with impact angle constraint," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 229, no. 5, pp. 867-890, 2015. [DOI:10.1177/0954410014540623]
45. [45] D. Zhou, S. Sun, J. Y. Zhou, and K. L. Teo, "A discrete sliding-mode guidance law," Journal of Dynamic Systems, Measurement, and Control, vol. 137, no. 2, p. 024501, 2015. [DOI:10.1115/1.4028038]
46. [46] Z. Zhu, D. Xu, J. Liu, and Y. Xia, "Missile Guidance Law Based on Extended State Observer," IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5882-5891, 2013. [DOI:10.1109/TIE.2012.2232254]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.