Volume 13, Issue 4 (Journal of Control, V.13, N.4 Winter 2020)                   JoC 2020, 13(4): 49-63 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasrolahi S S, Abdollahi F. Attitude Synchronization Control in Satellite Formation Flying in the Presence of States Measurement Errors. JoC 2020; 13 (4) :49-63
URL: http://joc.kntu.ac.ir/article-1-578-en.html
1- Amirkabir University of Technology
Abstract:   (6027 Views)
This paper presents a novel attitude synchronization framework for tracking control of multiple identical/heterogeneous satellites in formation flying with connected communication graph. The main contribution of the paper is considering sensors' measurement error to derive control gains. Moreover, the proposed strategy need no angular velocity communication. Nevertheless, the tracking synchronization among the satellites' attitudes with individual set-points is guaranteed. Accordingly, based on the Lyapunov criterion, uniformly ultimately boundedness of the synchronization/tracking errors are investigated. The simulation results are presented to illustrate the performance of the developed algorithm.
Full-Text [PDF 1388 kb]   (1965 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2018/04/30 | Accepted: 2018/08/18 | Published: 2020/01/30

1. Kroes R. Precise relative positioning of formation flying spacecraft using GPS. TU Delft, Delft University of Technology; 2006.
2. Rezaee, Hamed and Abdollahi, Farzaneh and Talebi, Heidar A. H∞ Based Motion Synchronization in Formation Flight With Delayed Communications. IEEE Transactions on Industrial Electronics. 2014;61(11):6175--6182. [DOI:10.1109/TIE.2014.2308134]
3. Rezaee, Hamed and Abdollahi, Farzaneh. Motion synchronization in unmanned aircrafts formation control with communication delays. Communications in Nonlinear Science and Numerical Simulation. 2013;18(3):744 - 756. [DOI:10.1016/j.cnsns.2012.08.015]
4. Alfriend, Kyle and Vadali, Srinivas Rao and Gurfil, Pini and How, Jonathan and Breger, Louis. Spacecraft formation flying: Dynamics, control and navigation. Butterworth-Heinemann; 2009.
5. Hui, Liu and Li, Junfeng. Terminal sliding mode control for spacecraft formation flying. IEEE Transactions on Aerospace and Electronic Systems. 2009;45(3):835--846. [DOI:10.1109/TAES.2009.5259168]
6. Wu, Baolin and Xu, Guangyan and Cao, Xibin. Relative dynamics and control for satellite formation: accommodating J 2 perturbation. Journal of Aerospace Engineering. 2016;29(4):401--411. [DOI:10.1061/(ASCE)AS.1943-5525.0000600]
7. Sandau, Rainer and Roeser, Hans Peter and Valenzuela, Arnoldo and others. Small Satellite Missions for Earth Observation. Springer; 2014.
8. Running, Zhang and Yang, Li and Shengil, Liu. System requirements and mission analysis for spacecraft SAR interferometry based on formation flying satellites. In: 21st international society of photogrammetry and remote sensing (ISPRS) congress; 2008; China.
9. فلاورجانی فک. کنترل همزمان مدار و وضعیت برای آرایش های پروازی دنباله روی. پژوهشگاه هوافضا; 1388.
10. Wang, P K C and Hadaegh, F Y and Lau, K. Synchronized formation rotation and attitude control of multiple free-flying spacecraft. Journal of Guidance, Control, and Dynamics. 1999;22(11):28--35. [DOI:10.2514/2.4367]
11. Kapila, Vikram and Sparks, Andrew G and Buffington, James M and Yan, Qiguo. Spacecraft formation flying: dynamics and control. Journal of Guidance, Control, and Dynamics. 2000;23(3):561--564. [DOI:10.2514/2.4567]
12. Kang, Wei and Sparks, Andrew. Coordinated attitude and formation control of multisatellite systems. In: AIAA Guidance, Navigation, and Control Conference and Exhibit; 2002; Monterey, California. [DOI:10.2514/6.2002-4655]
13. Chung, Soon Jo and Ahsun, Umair and Slotine, Jean Jacques E. Application of synchronization to formation flying spacecraft: Lagrangian approach. Journal of Guidance, Control, and Dynamics. 2009;32(2):512--526. [DOI:10.2514/1.37261]
14. Lee D. Spacecraft coupled tracking maneuver using sliding mode control with input saturation. Journal of Aerospace Engineering. 2014;28(5):401--413. [DOI:10.1061/(ASCE)AS.1943-5525.0000473]
15. Shan J. Six-degree-of-freedom synchronised adaptive learning control for spacecraft formation flying. IET Control Theory & Applications. 2008;2(10):930--949. [DOI:10.1049/iet-cta:20080063]
16. Beard, Randal W and Lawton, Jonathan and Hadaegh, Fred Y and others. A coordination architecture for spacecraft formation control. IEEE Transactions on control systems technology. 2009;9(6):777--790. [DOI:10.1109/87.960341]
17. Nazari, Morad and Butcher, Eric A and Yucelen, Tansel and Sanyal, Amit K. Decentralized consensus control of a rigid-body spacecraft formation with communication delay. Journal of Guidance, Control, and Dynamics. 2016;39(4):838--851. [DOI:10.2514/1.G001396]
18. Wang, Danwei and Wu, Baolin and Chung, Eng Kee Poh. Satellite Formation Flying. Singapore: Springer; 2017. [DOI:10.1007/978-981-10-2383-5]
19. Abdessameud, Abdelkader and Tayebi, Abdelhamid. Attitude synchronization of a group of spacecraft without velocity measurements. IEEE Transactions on Automatic Control. 2009;54(11):2642--2648. [DOI:10.1109/TAC.2009.2031567]
20. Kristiansen, Raymond and Lora, Antonio and Chaillet, Antoine and Nicklasson, Per Johan. Spacecraft relative rotation tracking without angular velocity measurements. Automatica. 2009;45(3):750--756. [DOI:10.1016/j.automatica.2008.10.012]
21. Bondhus, Anne Karin and Pettersen, Kristin Y and Gravdahl, J Tommy. Leader/follower synchronization of satellite attitude without angular velocity measurements. In: 44th IEEE Conference on Decision and Control, and European Control Conference; 2005; Seville, Spain.
22. Hu, Qinglei and Zhang, Jian and Zhang, Youmin. Velocity-free attitude coordinated tracking control for spacecraft formation flying. ISA Transactions. 2018;73(1):54-65. [DOI:10.1016/j.isatra.2017.12.019]
23. Ren W. Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Transactions on Control Systems Technology. 2010;18(2):383--392. [DOI:10.1109/TCST.2009.2016428]
24. Guo, Yong and Guo, Jin-hua and Li Ai-jun and Wang, Chang-qing. Attitude Coordination Control for Formation Flying Spacecraft Based on the Rotation Matrix. Journal of Aerospace Engineering. 2017;30(5):04017051. [DOI:10.1061/(ASCE)AS.1943-5525.0000759]
25. Kang, Wei and Yeh, Hsi Han. Coordinated attitude control of multi-satellite systems. International Journal of robust and nonlinear control. 2002;12(2--3):185--205. [DOI:10.1002/rnc.682]
26. Kristiansen, Raymond and Nicklasson, Per Johan and Gravdahl, Jan Tommy. Quaternion-based backstepping control of relative attitude in a spacecraft formation. In: 45th IEEE Conference on Decision and Control; 2006; San Diego, California. [DOI:10.1109/CDC.2006.377296]
27. Lawton, Jonathan R and Beard, Randal W. Synchronized multiple spacecraft rotations. Automatica. 2002;38(8):1359--1364. [DOI:10.1016/S0005-1098(02)00025-0]
28. VanDyke, Matthew C and Hall, Christopher D. Decentralized coordinated attitude control within a formation of spacecraft. Journal of Guidance, Control, and Dynamics. 2006;29(5):1101--1109. [DOI:10.2514/1.17857]
29. Bai, He and Arcak, Murat and Wen, John T. Leader-follower cooperative attitude control of multiple rigid bodies. Systems and Control Letters. 2009;58(6):429--465. [DOI:10.1016/j.sysconle.2009.02.002]
30. Ren, Wei and Beard, Randal. Decentralized scheme for spacecraft formation flying via the virtual structure approach. Journal of Guidance, Control, and Dynamics. 2004;27(1):73--82. [DOI:10.2514/1.9287]
31. Cong, Bing Long and Liu, Xiang Dong and Chen, Zhen. Distributed attitude synchronization of formation flying via consensus-based virtual structure. Acta Astronautica. 2011;68(11):1973--1986. [DOI:10.1016/j.actaastro.2010.11.014]
32. Lawton, Jonathan and Beard, Randal W and Hadaegh, Fred Y. Elementary attitude formation maneuvers via leader-following and behavior-based control. In: AIAA Guidance, Naviagtion, and Control Conference and Exhibit; 2000; Montreal, Canada. [DOI:10.2514/6.2000-4442]
33. Beard, Randal W and Lawton, Jonathan and Hadaegh, Fred Y and others. A coordination architecture for spacecraft formation control. IEEE Transactions on control systems technology. 2001;9(6):777--790. [DOI:10.1109/87.960341]
34. Mehrabian, Alireza and Khorasani, Khashayar. Distributed and cooperative quaternion-based attitude synchronization and tracking control for a network of heterogeneous spacecraft formation flying mission. Journal of the Franklin Institute. 2015;352(9):3885--3913. [DOI:10.1016/j.jfranklin.2015.04.007]
35. Wang, Xinsheng and Wu, Jingxin and Wang, Xiaoli. Distributed attitude consensus of spacecraft formation flying. Journal of Systems Engineering and Electronics. 2013;24(2):296--302. [DOI:10.1109/JSEE.2013.00037]
36. Zhao, Lin and Jia, Yingmin. Neural network-based distributed adaptive attitude synchronization control of spacecraft formation under modified fast terminal sliding mode. Neurocomputing. 2016;171(1):230 - 241. [DOI:10.1016/j.neucom.2015.06.063]
37. Qinglei Hu and Jian Zhang. Relative position finite-time coordinated tracking control of spacecraft formation without velocity measurements. ISA Transactions. 2015;54(1):60--74. [DOI:10.1016/j.isatra.2014.08.004]
38. Song, Yong Duan and Cai, Wen Chuan. New intermediate quaternion based control of spacecraft: part I-almost global attitude tracking. International Journal of Innovative Computing, Information and Control. 2012;8(10):7307--7319.
39. Xiao, Bing and Hu, Qinglei and Wang, Danwei. Spacecraft attitude fault tolerant control with terminal sliding-mode observer. Journal of Aerospace Engineering. 2013;28:401--405.
40. Schaub H., Junkins J. L. Stereographic orientation parameters for attitude dynamics: A generalization of the rodrigues parameters. Journal of the Astronautical Sciences. 1996;44(1):1--19.
41. Wertz J. R, Everett D. F, Puschell J. J. Space mission engineering: the new SMAD. Microcosm Press; 2011.
42. N C. Output Synchronization on Strongly Connected Graphs. IEEE Transactions on Automatic Control. 2012;57(11). [DOI:10.1109/TAC.2012.2193704]
43. D S. Position synchronization of multiple motion axes with adaptive coupling control. Automatica. 2003;39(6). [DOI:10.1016/S0005-1098(03)00037-2]
44. Castrup, Suzanne and Castrup, Howard T. Measurement uncertainty analysis principles and methods. NASA Measurement Quality Assurance Handbook -- Annex 3; 2010.
45. Boyd, Stephen P and ElGhaoui, Laurent and Feron, Eric and Balakrishnan, Venkataramanan. Linear matrix inequalities in system and control theory. SIAM; 1994. [DOI:10.1137/1.9781611970777]
46. Wang X, Zhao K, You Z. Coordinated motion control of distributed spacecraft with relative state estimation. Journal of Aerospace Engineering. 2015;29(3). [DOI:10.1061/(ASCE)AS.1943-5525.0000559]
47. Zhang F. The Schur complement and its applications. Springer Science & Business Media; 2006. [DOI:10.1007/b105056]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb