Volume 14, Issue 4 (Journal of Control, V.14, N.4 Winter 2021)                   JoC 2021, 14(4): 119-131 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi T, Alizadeh G A, Hasan Babayi Nozadia M. Improving the Frequency Fluctuations Attenuation of Microgrid by Determining Optimal communication System Delay and Virtual Inertia Values. JoC 2021; 14 (4) :119-131
URL: http://joc.kntu.ac.ir/article-1-605-en.html
1- Shandong University
2- Technical and Vocational University (TUV),Urmia Branch
3- Tabriz University
Abstract:   (5045 Views)
Micro grids are regarded to be crucial due to the development of communication facilities, production equipment, power storage and high utilization of renewable energy. However, micro grids are faced with the problem of frequency fluctuations in island mode because of high fluctuations in the production power of renewable sources. In this paper, the super capacitor has been used to increase the virtual inertia of the network along with the control system for energy storage and production systems in order to overcome the challenge mentioned earlier. Meanwhile, the optimal value of communication systems delay is also considered in the frequency settings of the micro grid.
The system frequency behavior is simulated against load and power generation variations to evaluate the performance of the proposed strategy. Given the increased cost of the system due to increased super capacitor capacity and the reduction of communication  delay against the improvement of micro grid frequency fluctuations, a multi-objective optimization method is used to regulate the load frequency (LFC) controllers parameters and  achieve minimum cost. The simulations of the network in question have been carried out in MATLAB / SIMULINK software. In this article, the cost reduction of operation of the microgrid due to the low capacity of the installed supercapacitor unit and communication systems with acceptable delay achievement are the most important innovational aspects of the current research. Furthermore, no battery units are required in the current paper thanks due to the presence of the supercapacitor. Batteries may cause problems for the network due to their low life and high maintenance costs. Simulation results have demonstrated that the system with optimal control parameters values, super capacitor capacity and communication s system delay has been able to overcome load and power generation disturbances, and the system frequency behavior is significantly improved in comparison with the non-optimal state.
Full-Text [PDF 618 kb]   (1161 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2018/07/28 | Accepted: 2019/12/9 | ePublished ahead of print: 2020/10/5 | Published: 2021/02/19

1. [1] Hatziargyriou, N. ed., 2014. Microgrids: architectures and control. John Wiley & Sons.
2. [2] Liu, W., Gu, W., Sheng, W., Meng, X., Wu, Z. and Chen, W., 2014. Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints. IEEE Transactions on Sustainable Energy, 5(2), pp.446-456. [DOI:10.1109/TSTE.2013.2293148]
3. [3] R. H. Lasseter and P. Piagi, "Microgrid: A conceptual solution," in Proc. IEEE 35th Annu. Power Electron. Spec. Conf. (PESC), Aachen, Germany, 2004, pp. 4285-4290.
4. [4] G. Venkataramanan and C. Marnay, 2008. A larger role for microgrids, IEEE Power Energy Mag., 6(3): 78-82. [DOI:10.1109/MPE.2008.918720]
5. [5] Chen, C., Wang, J., Qiu, F. and Zhao, D., 2016. Resilient distribution system by microgrids formation after natural disasters. IEEE Transactions on smart grid, 7(2), pp.958-966. [DOI:10.1109/TSG.2015.2429653]
6. [6] Abdmouleh, Z., Alammari, R.A. and Gastli, A., 2015. Review of policies encouraging renewable energy integration & best practices. Renewable and Sustainable Energy Reviews, 45, pp.249-262. [DOI:10.1016/j.rser.2015.01.035]
7. [7] Suntio, T., Messo, T. and Puukko, J., 2017. Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications. John Wiley & Sons. [DOI:10.1002/9783527698523]
8. [8] Rahimi, T., Hosseini, S.H., Sabahi, M., Abapour, M. and Gharehpetian, G.B., 2017. Three-phase soft-switching-based interleaved boost converter with high reliability. IET Power Electronics, 10(3), pp.377-386. [DOI:10.1049/iet-pel.2016.0211]
9. [9] Karasani, R.R., Borghate, V.B., Meshram, P.M., Suryawanshi, H.M. and Sabyasachi, S., 2017. A three-phase hybrid cascaded modular multilevel inverter for renewable energy environment. IEEE Transactions on Power Electronics, 32(2), pp.1070-1087. [DOI:10.1109/TPEL.2016.2542519]
10. [10] Rahimi, T., Hosseini, S.H., Sabahi, M., Gharehpetian, G.B., and Abapour, M.. 2018. Reliability evaluation of a fault-tolerant three-phase interleaved DC-DC boost converter, accepted for publication. Doi: 10.1177/0142331218776722 [DOI:10.1177/0142331218776722]
11. [11] Ionel Vechiu, Octavian Curea, Alvaro Llaria, Haritza Camblong, (2011) "Control of power converters for microgrids", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 30 Issue: 1, pp.300-309, [DOI:10.1108/03321641111091575]
12. [12] علی ربانی، علی کریم پور" شناسایی و مدل سازی توربین گاز و بررسی رفتار مدل نسبت به تغییرات فرکانسی شبکه قدرت" جله کنترل، جلد ۱۲، شماره ۳، پاییز ۱۳۹۷
13. [13] Tani, A., Camara, M.B. and Dakyo, B., 2015. Energy management in the decentralized generation systems based on renewable energy-Ultracapacitors and battery to compensate the wind/load power fluctuations. IEEE Transactions on Industry Applications, 51(2), pp.1817-1827. [DOI:10.1109/TIA.2014.2354737]
14. [14] Chen, Z. and Spooner, E., 2001. Grid power quality with variable speed wind turbines. IEEE Transactions on energy conversion, 16(2), pp.148-154. [DOI:10.1109/60.921466]
15. [15] Liang, X., 2017. Emerging power quality challenges due to integration of renewable energy sources. IEEE Transactions on Industry Applications, 53(2), pp.855-866. [DOI:10.1109/TIA.2016.2626253]
16. [16] Díaz-González, F., Sumper, A., Gomis-Bellmunt, O. and Villafáfila-Robles, R., 2012. A review of energy storage technologies for wind power applications. Renewable and sustainable energy reviews, 16(4), pp.2154-2171. [DOI:10.1016/j.rser.2012.01.029]
17. [17] Shim, J.W., Cho, Y., Kim, S.J., Min, S.W. and Hur, K., 2013. Synergistic control of SMES and battery energy storage for enabling dispatchability of renewable energy sources. IEEE Transactions on Applied Superconductivity, 23(3), pp.5701205-5701205. [DOI:10.1109/TASC.2013.2241385]
18. [18] Onar, O.C., Uzunoglu, M. and Alam, M.S., 2006. Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system. Journal of power sources, 161(1), pp.707-722. [DOI:10.1016/j.jpowsour.2006.03.055]
19. [19] Jing, W., Lai, C.H., Wong, W.S. and Wong, M.D., 2017. Dynamic power allocation of battery-supercapacitor hybrid energy storage for standalone PV microgrid applications. Sustainable Energy Technologies and Assessments, 22, pp.55-64. [DOI:10.1016/j.seta.2017.07.001]
20. [20] فاطمه جمشیدی; سیده لی لی امامزاده یی; محمد مهدی قنبریان. "کنترل فرکانس ریزشبکه‌‌ی جزیره‌‌ای با کنترلگر تناسبی- انتگرالی ‌‌تنظیم شده با منطق فازی و الگوریتم ازدحام ذرات". مجله علمی-پژوهشی رایانش نرم و فناوری اطلاعات, 6, 1, 1396, -.
21. [21] Kalantar, M., 2010. Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. Applied energy, 87(10), pp.3051-3064. [DOI:10.1016/j.apenergy.2010.02.019]
22. [22] Gao, L., Jiang, Z. and Dougal, R.A., 2004. An actively controlled fuel cell/battery hybrid to meet pulsed power demands. Journal of Power Sources, 130(1-2), pp.202-207. [DOI:10.1016/j.jpowsour.2003.12.052]
23. [23] Nayeripour, M., Hoseintabar, M., Niknam, T., 2011. Frequency Deviation Control by Coordination Control of FC and Double-Layer Capacitor in an Autonomous Hybrid Renewable Energy Power Generation System", Renewable Energy, 36(2): pp. 1741-1746. [DOI:10.1016/j.renene.2010.12.012]
24. [24] Khoobana, M. H., Niknam, T., Blaabjerg, F., & Dragicevic, T. (2016). A new load frequency control strategy for micro-grids with considering electrical vehicles. Electric 'Power Systems Research,1-14. [DOI:10.1016/j.epsr.2016.10.057]
25. [25] L. Sigrist, I. Egido, E. Lobato Miguélez, L. Rouco, Sizing and controller setting of ultracapacitors for frequency stability enhancement of small isolated power systems, IEEE Trans. Power Syst. 30 (July (4)) (2015) 2130-2138 [DOI:10.1109/TPWRS.2014.2356721]
26. [26] Mehran Esmaeili, Hossein Shayeghi, Hamid Mohammad nejad, Abdollah Younesi, (2017) Reinforcement learning based PID controller design for LFC in a microgrid", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , Vol. 36 Issue: 4, doi: 10.1108/COMPEL-09-2016-0408 Permanent link to this document: http://dx.doi.org/10.1108/COMPEL-09-2016-0408. [DOI:10.1108/COMPEL-09-2016-0408]
27. [27] Fini, M.H. and Golshan, M.E.H., (2018). Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electric Power Systems Research, 154, pp.13-22. [DOI:10.1016/j.epsr.2017.08.007]
28. [28] Jiang, L., Yao, W., Wu, Q. H., Wen, J. Y., & Cheng, S. J. (2012). Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Transactions on Power Systems, 27, 932-941. [DOI:10.1109/TPWRS.2011.2172821]
29. [29] Fattahi, J., Schriemer, H., Bacque, B., Or, R., Hinzer, K., & Haysom, J. E. (2016). High stability adaptive microgrid control method using fuzzy logic. Sustainable Cities and Society, 25,57-64. [DOI:10.1016/j.scs.2016.03.003]
30. [30] Mishra, S., Mallesham, G. and Jha, A.N., (2012). Design of controller and communication for frequency regulation of a smart microgrid. IET Renewable Power Generation, 6(4), pp.248-258. [DOI:10.1049/iet-rpg.2011.0165]
31. [31] Coello, C.C.A., Pulido, G.T. & Lechuga, M.S. (2004). Handling Multiple Objectives With Particle Swarm Optimization. IEEE Transaction on Evolutionary Computation, 8(3), pp. 256-279. [DOI:10.1109/TEVC.2004.826067]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb