Volume 15, Issue 2 (Journal of Control, V.15, N.2 Summer 2021)                   JoC 2021, 15(2): 33-49 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramezani E, Shojaei K. Finite-time Target Tracking for an Autonomous Submarine in Three-Dimensional Space by Using Dynamic Surface Control. JoC. 2021; 15 (2) :33-49
URL: http://joc.kntu.ac.ir/article-1-741-en.html
1- Najafabad Branch, Islamic Azad University
Abstract:   (1923 Views)
In this paper, the control problem of a finite-time target tracking for an underactuated autonomous submarine is considered in three-dimensional space in the presence of unknown disturbances caused by waves and ocean currents via Dynamic Surface Control (DSC) method. At first, computational complexities of the backstepping method are greatly reduced by employing the DSC technique. Next, by designing a finite-time controller, it can be demonstrated that system errors converge to a small region containing the origin in a finite time. An adaptive robust controller is employed to compensate for unknown vehicle parameters and uncertain nonlinearities. The stability of the proposed controller is demonstrated by an analysis based on Lyapunov theory. Finally, the tracking performance of the proposed control scheme is simulated by MATLAB software and its effectiveness is shown as well.
Full-Text [PDF 1081 kb]   (26 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2020/02/13 | Accepted: 2020/10/19 | ePublished ahead of print: 2020/11/17 | Published: 2021/07/4

References
1. [1] Spong, M. W., Hutchinso. S, Vidyasagar. M, "Robot Modeling and Control", John Wiley and Sons, 2006.‏
2. [2] Mukherjee. K., Kar. I. N., Bhatt. R. K. P, "Region tracking based control of an autonomous underwater vehicle with input delay", Ocean Engineering, vol. 99, pp. 107-114, 2015. [DOI:10.1016/j.oceaneng.2015.02.006]
3. [3] Xing. W., Zhao. Y., Karimi. H. R. "Convergence Analysis on Multi-AUV Systems with Leader-Follower Architecture", IEEE Access, vol. 5, pp. 853-868, 2017. [DOI:10.1109/ACCESS.2017.2651048]
4. [4] Li, J., Du, J., "Robust adaptive formation control of underactuated autonomous underwater vehicles under input saturation", Chinese Control and Decision Conference (CCDC), Shenyang, China, IEEE, pp. 5798-5803, 2018. [DOI:10.1109/CCDC.2018.8408144]
5. [5] Park. B. S., "Adaptive formation control of underactuated autonomous underwater vehicles", Ocean Engineering, vol. 96, pp. 1-7, 2015. [DOI:10.1016/j.oceaneng.2014.12.016]
6. [6] Yan. Z., Yu. H., Zhang. W., Li. B., Zhou. J., "Globally finite-time stable tracking control of underactuated UUVs", Ocean Engineering, vol. 107, pp. 132-146, 2015. [DOI:10.1016/j.oceaneng.2015.07.039]
7. [7] Wang, J., Wang, C., Wei, Y., Zhang, C., "Command filter based adaptive neural trajectory tracking control of an underactuated underwater vehicle in three-dimensional space", Ocean Engineering, vol. 180, pp. 175-186, 2019. [DOI:10.1016/j.oceaneng.2019.03.061]
8. [8] Sun. B., Zhu. D., Yang. S. X., "A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle", IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3682-3693, 2014. [DOI:10.1109/TIE.2013.2267698]
9. [9] Harun N., Zain. Z. Md., "A Backstepping based PID controller for stabilizing an underactuated X4-AUV", ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 21, pp. 9819-9824, 2015.
10. [10] Qi, X., "Adaptive coordinated tracking control of multiple autonomous underwater vehicles", Ocean Engineering, vol. 91, pp. 84-90, 2014. [DOI:10.1016/j.oceaneng.2014.08.019]
11. [11] Xiang. X., Chen. D., Yu. C., Ma L., "Coordinated 3D Path Following for Autonomous Underwater Vehicles via Classic PID Controller", IFAC Proceedings Volumes, vol. 46, no. 20, pp. 327-332, 2013. [DOI:10.3182/20130902-3-CN-3020.00188]
12. [12] Farhan. M., Bhatti. A. I., Kamal. W. A., Yousafzai. I. K., "Sliding Mode Based MIMO Control of Underwater Vehicle", 11th Asian Control Conference (ASCC), Gold Coast, pp. 2899-2904, 2017. [DOI:10.1109/ASCC.2017.8287638]
13. [13] Suarez. A. E. Z., et. al, "Depth control of an underwater vehicle using robust PD controller: real-time experiments", IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Portugal, pp. 1-6, 2018. [DOI:10.1109/AUV.2018.8729783]
14. [14] Chen, Y., Yan, Y., Wang, K., Liu, S., "An adaptive fuzzy sliding mode controller for the depth control of an underactuated underwater vehicle, International Journal of Advanced Robotic Systems, DOI: 10.1177/1729881419840213, 2019. [DOI:10.1177/1729881419840213]
15. [15] Li, J., Du, J., "Robust adaptive formation control of underactuated autonomous underwater vehicles under input saturation", Chinese Control and Decision Conference (CCDC), Shenyang, pp. 5798-5803, 2018. [DOI:10.1109/CCDC.2018.8408144]
16. [16] Wang. C., Zhang. F., Cheng. C., He. Y, "Robust AUV Localization Based on Switchable Constraints", OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, pp. 1-5, 2018. [DOI:10.1109/OCEANSKOBE.2018.8559181]
17. [17] Li. S., Liu. L., Liu. M., Zhang. S., Yang. Y., Wang. X, "Robust Trajectory Tracking Control for AUV System Based on Fractional-Order PD Controller", OCEANS MTS/IEEE Charleston, Charleston, pp. 1-6, 2018. [DOI:10.1109/OCEANS.2018.8604870]
18. [18] Kamal. O, "Robust Heading Stabilization and Control for a class of Autonomous Underwater Vehicles using Nonlinear State Estimators", 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Pakistan, pp. 830-836, 2019. [DOI:10.1109/IBCAST.2019.8667246]
19. [19] فقیه. س، شجاعی. خ، " کنترل فیدبک حالت جزئی برای ردیابی مسیر شناور زیرسطح خودگردان تحریک ناقص با استفاده از کنترل سطح دینامیکی تطبیقی- عصبی"، مجله کنترل، جلد 11، شماره 2، صفحات 43-54، 1396.
20. [20] Wang. J., Wang. C., Wei. Y., Zhang. C, "Command filter based adaptive neural trajectory tracking control of an underactuated underwater vehicle in three-dimensional space", Ocean Engineering, vol. 180, pp. 175-186, 2019. [DOI:10.1016/j.oceaneng.2019.03.061]
21. [21] Guerrero, J., Torres, J., Creuze, V., Chemori, A., "Trajectory tracking for autonomous underwater vehicle: An adaptive approach", Ocean Engineering, vol. 172, pp. 511-522, 2019. [DOI:10.1016/j.oceaneng.2018.12.027]
22. [22] Wang. H., Wang. D., Peng. Z., Yan, L., Diao. L, "Robust adaptive dynamic surface control for synchronized path following of multiple underactuated autonomous underwater vehicles", Proceedings of the 33rd Chinese Control Conference, Nanjing, pp. 1949-1954, 2014. [DOI:10.1109/ChiCC.2014.6896928]
23. [23] Han, S. I., Ha, H., Lee, J. M., 2016 "Fuzzy finite-time dynamic surface control for nonlinear large-scale systems", International Journal of Fuzzy Systems, vol. 18, pp. 570-584. ‏ [DOI:10.1007/s40815-015-0088-2]
24. [24] Liu, H, Zhang, T. "Adaptive Neural Network Finite-Time Control for Uncertain Robotic Manipulators", Intelligent and Robotic Systems, vol. 75, pp. 363-377, 2014. [DOI:10.1007/s10846-013-9888-5]
25. [25] Fu, C., Tian, Y., Huang, H., Zhang, L., Peng, C., "Finite-time trajectory tracking control for a 12-rotor unmanned aerial vehicle with input saturation", ISA transactions, vol. 81, pp. 52-62, 2018. ‏ [DOI:10.1016/j.isatra.2018.08.005]
26. [26] فاضلی. م، مختاری. م، ایمانی. ک، "طراحی کنترل کننده¬ی مد لغزشی زمان محدود به همراه تخمین تأخیر زمانی برای هلیکوپتر سه درجه آزادی"، هجدهمین کنفرانس انجمن هوافضای ایران، تهران، دانشکده مهندسی هوافضای دانشگاه صنعتی امیرکبیر، 1398.
27. [27] Xu. J., Wang. M., Qiao. L, "Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles", Ocean Engineering, vol. 105, pp. 54-63, 2015. ‏ [DOI:10.1016/j.oceaneng.2015.06.022]
28. [28] Zhou. J., Ye. D., Zhao. J., He. D, "Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation", International Journal of Naval Architecture and Ocean Engineering, vol. 10, pp. 282-293, 2018. [DOI:10.1016/j.ijnaoe.2017.08.006]
29. [29] Shojaei, K., Dolatshahi. M., "Line-of-sight target tracking control of underactuated autonomous underwater vehicles", Ocean Engineering, vol. 133, pp. 244-252, 2017. [DOI:10.1016/j.oceaneng.2017.02.007]
30. [30] SNAME, "The society of naval architects and marine engineering", Nomenclature for Treating the Motion of a submerged Body through a Fluid in Technical and research Bulletin, vol. 1, 1950.
31. [31] Do, Khac Duc; Pan, Jie, "Control of ships and underwater vehicles: design for underactuated and nonlinear marine systems", Springer, London, 2009.
32. [32] Fossen, Thor Inge "Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles", Marine Cybernetics, Trondheim, 2002.
33. [33] Polycarpou, M, "Stable adaptive neural control scheme for nonlinear systems", IEEE Transaction on Automatic Control, vol. 41, no. 3, pp. 447-451, 1996. [DOI:10.1109/9.486648]
34. [34] Khalil, H., Nonlinear Systems, Englewood Cliffs, Third Edition, Prentice Hall, 2002.
35. [35] Galicki. M, "Finite-time control of robotic manipulators", Automatica, vol. 51, no. 2, pp. 49-54, 2015. [DOI:10.1016/j.automatica.2014.10.089]
36. [36] Cai. M., Xiang. Z., Guo. J., "Adaptive finite-time consensus protocols for multi-agent systems by using neural networks", IET Control Theory & Applications, vol. 10, no. 4, pp. 371-380, 2016. [DOI:10.1049/iet-cta.2015.0915]
37. [37] Zhao. D., Li. S., Gao. F., "A new terminal sliding mode control for robotic manipulators", International Journal of Control, vol. 82, no. 10, pp. 1804-1813, 2009. [DOI:10.1080/00207170902769928]
38. [38] Elhaki. O., Shojaei. K., "Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance", Ocean Engineering, vol. 167, pp. 239-256, 2018.‏ [DOI:10.1016/j.oceaneng.2018.08.007]
39. [39] Bechlioulis C. P., Rovithakis G. A., "Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems With Prescribed Performance", IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2090-2099, 2008.‏‏ [DOI:10.1109/TAC.2008.929402]
40. [40] Elhaki, O., Shojaei, K., "A robust neural network approximation-based prescribed performance output-feedback controller for autonomous underwater vehicles with actuators saturation", Engineering Applications of Artificial Intelligence, vol. 88, pp. 103382, 2020.‏‏ [DOI:10.1016/j.engappai.2019.103382]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb