1. [1] ISA, (Instrumentation, Systems & Automation Society). "Management of alarm systems for the process industries", North Carolina: ISA 18.02, 2009.
2. [2] EEMUA, (Engineering Equipment and Materials Users' Association). "Alarm systems: a guide to design, management and procurement", 3rd ed. London: EEMUA Publication 191, 2013.
3. [3] Su, J., et al., "A multi-setpoint delay-timer alarming strategy for industrial alarm monitoring", Journal of Loss Prevention in the Process Industries, vol.54, pp. 1-9, 2018. [
DOI:10.1016/j.jlp.2018.02.004]
4. [4] Taheri-Kalani, J., Latif-Shabgahi, G. and Alyari-Shooredeli, M., "On the use of penalty approach for design and analysis of univariate alarm systems", Journal of Process Control, vol.69, pp. 103-113, 2018. [
DOI:10.1016/j.jprocont.2018.07.018]
5. [5] Lin, J., et al., "A generalized alarm delay-timer's performance indices computing method", Systems Science & Control Engineering, vol.6, pp. 297-304, 2018. [
DOI:10.1080/21642583.2018.1554838]
6. [6] Aslansefat, K., et al., "Performance evaluation and design for variable threshold alarm systems through semi-Markov process", ISA Transactions, vol. 97, pp. 282-295, 2019. [
DOI:10.1016/j.isatra.2019.08.015]
7. [7] وحید محمدزاده ایوقی، مهدی علیاری شورهدلی، "آنالیز حساسیت و طراحی سیستم هشدار تکمتغیره بر مبنای تایمر تأخیر با لحاظکردن خطای اندازهگیری "، مجله مهندسی مکانیک مدرس، جلد 19، شماره 5، صفحات 1155-1165، 1398.
8. [8] Kaced, R., Kouadri, A. and Baiche, K., "Designing alarm system using modified generalized delay-timer", Journal of Loss Prevention in the Process Industries, vol.61, pp. 40-48, 2019. [
DOI:10.1016/j.jlp.2019.04.010]
9. [9] جعفر طاهری کلانی، غلامرضا لطیف شبگاهی، مهدی علیاری شورهدلی، وحید محمدزاده ایوقی، مهدی علیاری شورهدلی، " طراحی یک سیستم هشدار تک متغیره با رویکرد تایمرهای تأخیری مبتنی بر سناریوی آستانه چندگانه"، مجله مهندسی برق تبریز، جلد 49، شماره 3، صفحات 1153-1165، 1398.
10. [10] Wang, Z., et al., "Indexing and designing deadbands for industrial alarm signals", IEEE Transactions on Industrial Electronics, vol.66, no.10, pp. 8093-8103, 2019. [
DOI:10.1109/TIE.2018.2885718]
11. [11] Afzal, M.S., Chen, A. and Izadi, I., "Analysis and design of time-deadbands for univariate alarm systems ", Control Engineering Practice, vol.71, pp. 96-107, 2018. [
DOI:10.1016/j.conengprac.2017.10.016]
12. [12] Tulsyan, A and Gopaluni, R.B., "Univariate model-based deadband alarm design for nonlinear processes ", Industrial & Engineering Chemistry Research, vol.58, No. 26, pp. 11295-11302, 2019. [
DOI:10.1021/acs.iecr.9b00014]
13. [13] Montgomery, D.C., " Introduction to Statistical Quality", (5th Edition), Aug 2004, [Online] Available: https://www. wiley.com.
14. [14] Izadi, I., Shah, S.L., Shook, D.S., Kondaveeti, S.R. and Chen, T., "A framework for optimal design of alarm systems ", Journal of Process Control, vol.42, No. 8, pp. 651-656, 2011. [
DOI:10.3182/20090630-4-ES-2003.00108]
15. [15] Chen, J. and Ron, J.P., "Robust model-based fault diagnosis for dynamic systems", (first Edition), [Online] Available: https://www.springer.com, 1998. [
DOI:10.1007/978-1-4615-5149-2_9]
16. [16] Cheng, Y., Izadi, I. and Chen, T., " Optimal alarm signal processing: filter design and performance analysis ", IEEE Transactions on Automation Science and Engineering, vol.10, No. 2, pp. 446-451, 2013. [
DOI:10.1109/TASE.2012.2233472]
17. [17] Yu. j. and Joe Qin. S., "Multimode process monitoring with bayesian inference-based finite gaussian mixture models", American Institute of Chemical Engineers, vol.54, no.7, pp. 1811-1829, 2008. [
DOI:10.1002/aic.11515]
18. [18] Veracini, T., et al, "Fully unsupervised learning of gaussian mixtures for anomaly detection in hyperspectral imagery"ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, Nov 2009. [
DOI:10.1109/ISDA.2009.220]
19. [19] Yu, J., "Fault detection using principal components-based gaussian mixture model for semiconductor manufacturing processes", IEEE Transactions on Semiconductor Manufacturing, vol.24, no.3, pp. 432-444, 2011. [
DOI:10.1109/TSM.2011.2154850]
20. [20] Choi, S.W., et al., "Fault detection based on a maximum-likelihood Principal Component Analysis (PCA) mixture", Industrial & Engineering Chemistry Research, vol.44, no.7, pp. 2316-2327, 2005. [
DOI:10.1021/ie049081o]
21. [21] Marwala, T., Mahola, U. and Nelwamondo, F.V., "Hidden markov models and gaussian mixture models for bearing fault detection using fractals", The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada. [
DOI:10.1109/IJCNN.2006.247310]
22. [22] Wang, G.F., Li, Y.B. and Luo, Z.G., "Fault classification of rolling bearing based on reconstructed phase space and gaussian mixture model", Journal of Sound and Vibration, vol.323, no.3, pp. 1077-1089, 2009. [
DOI:10.1016/j.jsv.2009.01.003]
23. [23] Bashi, A., Jilkov, V.P. and Li, X.R, "Fault detection for systems with multiple unknown modes and similar units and its application to HVAC", IEEE Transactions on Control Systems Technology, vol.19, no.5, pp. 957-968., 2011. [
DOI:10.1109/TCST.2010.2062183]
24. [24] Yu, J., "A nonlinear kernel gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes", Chemical Engineering Science, vol.68, no.1, pp. 506-519, 2012. [
DOI:10.1016/j.ces.2011.10.011]
25. [25] Yu, J., "A particle filter driven dynamic gaussian mixture model approach for complex process monitoring and fault diagnosis", Journal of Process Control, vol.22, no.4, pp. 778-788, 2012. [
DOI:10.1016/j.jprocont.2012.02.012]
26. [26] Izadi, I., et al., "An introduction to alarm analysis and design. IFAC Proceedings Volumes, vol.42, no.8, pp. 645-650, 2009. [
DOI:10.3182/20090630-4-ES-2003.00107]
27. [27] Wang, Z. and Scott, D.W., "Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications, vol.11, 2019. [
DOI:10.1002/wics.1461]
28. [28] Bartys, M., Patton, R., Syfert, M., Heras, S.D.L. and Quevedo, J., "Introduction to the DAMADICS actuator FDI benchmark study". Control Engineering Practice, vol.14, pp. 577-596, 2005. [
DOI:10.1016/j.conengprac.2005.06.015]
29. [29] Xu, J., et al., "Performance assessment and design for univariate alarm systems based on FAR, MAR, and AAD", IEEE Transactions on Automation Science and Engineering, vol.9, no.2, pp. 296-307, 2011. [
DOI:10.1109/TASE.2011.2176490]