Volume 16, Issue 1 (Journal of Control, V.16, N.1 Spring 2022)                   JoC 2022, 16(1): 73-87 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khosravi Samani M, Basohbat Novinzadeh A. A Multi-body Control Approach for Flapping Wing Micro Aerial Vehicles. JoC 2022; 16 (1) :73-87
URL: http://joc.kntu.ac.ir/article-1-763-en.html
1- K.N. Toosi University of Technology
Abstract:   (3150 Views)
Flapping wing micro aerial vehicle (FWMAV) has a multi-body and periodic dynamics, which is influenced by unsteady aerodynamics. These features make it more difficult to control. Ignoring of the wing inertia, dynamics averaging, and using a simple aerodynamic model are the simplifying assumptions for conventional model-based control, although they may result in inaccurate control. To overcome these difficulties, a multi-body control is proposed based on a model-free adaptive variable structure control (MFAVSC) approach. This is one of the first frameworks for multi-body control of FWMAV. This is the first proposed method for the FWMAV control, which considers multi-body, nonlinear and time-varying dynamics as well as main aerodynamic characteristics in an integrated framework. MFAVSC takes advantage of input/output data, while not including any explicit model information. At first, the nonlinear FWMAV dynamics is transformed into an equivalent dynamic linearization description with a concept called pseudo-partial derivative (PPD). After estimating the PPD matrix, model-free adaptive control law is designed based on the optimal criteria. Then, it is augmented by a variable structure control term to guarantee the stability, as well as speeding up its convergence. Finally, simulation results demonstrate the effectiveness of the proposed scheme to trajectory control of the FWMAV
Full-Text [PDF 891 kb]   (719 Downloads)    
Type of Article: Research paper | Subject: General
Received: 2020/05/28 | Accepted: 2021/03/8 | ePublished ahead of print: 2021/03/30 | Published: 2023/11/4

References
1. [1] C.T. Orlowski, and A.R. Girard, "Modeling and simulation of nonlinear dynamics of flapping wing micro air vehicles," AIAA journal, vol. 49, no. 5, pp. 969-981, 2011. [DOI:10.2514/1.J050649]
2. [2] M. Bolender, "Rigid multi-body equations-of-motion for flapping wing mavs using kane's equations," AIAA Guidance, Navigation, and Control Conference, pp. 6158, 2009. [DOI:10.2514/6.2009-6158]
3. [3] J.A. Grauer, and J.E. Hubbard, "Multibody model of an ornithopter," Journal of Guidance, Control, and Dynamics, vol. 32, no. 5, pp. 1675-1679, 2009. [DOI:10.2514/1.43177]
4. [4] C.T. Orlowski, and A.R. Girard, "Dynamics, stability, and control analyses of flapping wing micro-air vehicles," Progress in Aerospace Sciences, vol. 51, pp. 18-30,2012. [DOI:10.1016/j.paerosci.2012.01.001]
5. [5] X. Deng, L. Schenato, and S.S. Sastry, "Flapping flight for biomimetic robotic insects: Part II-flight control design," IEEE Transactions on Robotics, vol. 22, no. 4, pp. 789-803, 2006. [DOI:10.1109/TRO.2006.875483]
6. [6] L. Schenato, D. Campolo, and S. Sastry, "Controllability issues in flapping flight for biomimetic micro aerial vehicles (MAVs)," 42nd IEEE International Conference on Decision and Control (IEEE Cat. no. 03CH37475), vol. 6, pp. 6441-6447, 2003.
7. [7] H.E. Taha, S. Tahmasian, C.A. Woolsey, A.H. Nayfeh, and M.R. Hajj, "The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight," Bioinspiration & Biomimetics, vol. 10, no. 1, pp. 016002, 2015. [DOI:10.1088/1748-3190/10/1/016002]
8. [8] C.T. Orlowski, and A.R. Girard, "Longitudinal flight dynamics of flapping-wing micro air vehicles," Journal of Guidance, Control, and Dynamics, vol. 35, no. 4, pp. 1115-1131, 2012. [DOI:10.2514/1.55923]
9. [9] A. A. Hussein, A. E. Seleit, H. E. Taha, and M. R. Hajj, "Optimal transition of flapping wing micro-air vehicles from hovering to forward flight," Aerospace Science and Technology, vol. 90, pp. 246-263, 2019. [DOI:10.1016/j.ast.2019.04.043]
10. [10] K. Loh, M. Cook, and P. Thomasson, "An investigation into the longitudinal dynamics and control of a flapping wing micro air vehicle at hovering flight," The Aeronautical Journal, vol. 107, no. 1078, pp. 743-753, 2003.
11. [11] ثريا ليثي." طراحي كنترل كننده براي ربات بالزن شبه پرنده". پایان¬نامه کارشناسی ارشد، دانشگاه علم وصنعت ایران، 1399.
12. [12] D.B. Doman, M.W. Oppenheimer, and D.O. Sigthorsson, "Wingbeat shape modulation for flapping-wing micro-air-vehicle control during hover," Journal of Guidance, Control, and Dynamics, vol. 33, no. 3, pp. 724-739, 2010. [DOI:10.2514/1.47146]
13. [13] H. Rifai, N. Marchand, and G. Poulin-Vittrant, "Bounded control of an underactuated biomimetic aerial vehicle-Validation with robustness tests," Robotics and Autonomous Systems, vol. 60, no. 9, pp. 1165-1178, 2012. [DOI:10.1016/j.robot.2012.05.011]
14. [14] S. Tahmasian, C.A. Woolsey, and H.E. Taha, "Longitudinal flight control of flapping wing micro air vehicles," AIAA Guidance, Navigation, and Control Conference, pp. 1470, 2014. [DOI:10.2514/6.2014-1470]
15. [15] T. Rakotomamonjy, M. Ouladsine, and T. Le Moing, "Longitudinal modelling and control of a flapping-wing micro aerial vehicle," Control Engineering Practice, vol. 18, no. 7, pp. 679-690, 2010. [DOI:10.1016/j.conengprac.2010.02.002]
16. [16] E. Khanmirza, A. Yousefi-Koma, and B. Tarvirdizadeh, "Nonlinear trajectory control of a flapping-wing micro aerial vehicle," Aircraft Engineering and Aerospace Technology, vol. 84, no. 1, pp. 58-65, 2012. [DOI:10.1108/00022661211194988]
17. [17] A. Banazadeh, and N. Taymourtash, "Adaptive attitude and position control of an insect-like flapping wing air vehicle," Nonlinear Dynamics, vol. 85, no. 1, pp. 47-66, 2016. [DOI:10.1007/s11071-016-2666-8]
18. [18] K. Peng, F. Lin, and B.M. Chen, "Modeling and control analysis of a flapping-wing micro aerial vehicle," 13th IEEE International Conference on Control & Automation (ICCA), pp. 295-300, 2017. [DOI:10.1109/ICCA.2017.8003076]
19. [19] A. Serrani, "Robust nonlinear control design for a minimally-actuated flapping-wing MAV in the longitudinal plane," 50th IEEE Conference on Decision and Control and European Control Conference, pp. 7464-7469, 2011. [DOI:10.1109/CDC.2011.6160856]
20. [20] X.-T. Tran, H. Oh, I.-R. Kim, and S. Kim, "Attitude stabilization of flapping micro-air vehicles via an observer-based sliding mode control method," Aerospace Science and Technology, vol. 76, pp. 386-393, 2018. [DOI:10.1016/j.ast.2018.01.045]
21. [21] M. Alkitbi, and A. Serrani, "Robust control of a flapping-wing mav by differentiable wingbeat modulation," IFAC, vol. 49, no. 18, pp. 290-295, 2016. [DOI:10.1016/j.ifacol.2016.10.179]
22. [22] Li. Qingwei, and H. Duan, "Modeling and adaptive control for flapping-wing micro aerial vehicle," International Conference on Intelligent Computing, pp. 269-276, 2012. [DOI:10.1007/978-3-642-31588-6_35]
23. [23] W. He, Z. Yan, C. Sun, and Y. Chen, "Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer," IEEE Transactions on Cybernetics, vol. 47, no. 10, pp. 3452-3465, 2017. [DOI:10.1109/TCYB.2017.2720801]
24. [24] B. Zhu, and Z. Zuo, "Adaptive model predictive control for set-point tracking of a single-DOF flapping-wing unmanned aerial vehicle," 13th IEEE International Conference on Control & Automation (ICCA), pp. 861-866, 2017. [DOI:10.1109/ICCA.2017.8003173]
25. [25] B. Cheng, and X. Deng, "A neural adaptive controller in flapping flight," Journal of Robotics and Mechatronics, vol. 24, no. 4, pp. 602-611, 2012. [DOI:10.20965/jrm.2012.p0602]
26. [26] W. He, T. Meng, X. He, and C. Sun, "Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances," IEEE transactions on cybernetics vol. 49, no. 4, pp. 1524-1535, 2018. [DOI:10.1109/TCYB.2018.2808321]
27. [27] D. Sun, X. Shao, and G. Feng, "A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments," IEEE Transactions on Control Systems Technology, vol. 15, no. 2, pp. 306-314, 2007. [DOI:10.1109/TCST.2006.883201]
28. [28] M.B. Radac, R.E. Precup, and E.M. Petriu, "Model-free primitive-based iterative learning control approach to trajectory tracking of MIMO systems with experimental validation," IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 11, pp. 2925-2938, 2015. [DOI:10.1109/TNNLS.2015.2460258]
29. [29] W. Wang, and Y. Yu, "Fuzzy adaptive consensus of second-order nonlinear multi-agent systems in the presence of input saturation," International Journal of Innovative Computing, Information and Control, vol. 12, no. 2, pp. 533-542, 2016.
30. [30] X. Su, L. Wu, P. Shi, and C.P. Chen, "Model approximation for fuzzy switched systems with stochastic perturbation," IEEE Transactions on Fuzzy Systems, vol. 23, no. 5, pp. 1458-1473, 2014. [DOI:10.1109/TFUZZ.2014.2362153]
31. [31] P. Shi, X. Su, and F. Li, "Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation," IEEE Transactions on Automatic Control, vol. 61, no. 6, pp. 1694-1699, 2015. [DOI:10.1109/TAC.2015.2477976]
32. [32] X. Su, L. Wu, P. Shi, and Y.D. Song, "A novel approach to output feedback control of fuzzy stochastic systems," Automatica, vol. 50, no. 12, pp. 3268-3275, 2014. [DOI:10.1016/j.automatica.2014.10.053]
33. [33] S.L. Dai, C. Wang, and F. Luo, "Identification and learning control of ocean surface ship using neural networks," IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 801-810, 2012. [DOI:10.1109/TII.2012.2205584]
34. [34] حمید رضا خدابخش." مدل سازی و طراحی کنترلر پرواز شناور یک شبه حشره بالزن ". پایان¬نامه کارشناسی ارشد، دانشگاه صنعتی شریف،1389.
35. [35] N. Ji, D. Xu, and F. Liu, "Model-free adaptive optimal controller design for aeroelastic system with input constraints," International Journal of Advanced Robotic Systems, vol. 14, no. 1, pp. 1-10, 2016. [DOI:10.1177/1729881416678138]
36. [36] Y. Yanling, "Model free adaptive control for robotic manipulator trajectory tracking," The Open Automation and Control Systems Journal, vol.11, no. 7, pp. 358-365, 2015. [DOI:10.2174/1874444301507010358]
37. [37] B. Widrow, and E. Walach, "Multiple Input-Multiple Output (MIMO) Adaptive Inverse Control Systems," Hoboken: Wiley-IEEE Press, pp. 270-302, 2008. [DOI:10.1002/9780470231616]
38. [38] Z.-S. Hou, J.-X. Xu, "On data-driven control theory: the state of the art and perspective,"
39. [39] J.S. Wang, and G.H. Yang, "Data-driven output-feedback fault-tolerant control for unknown dynamic systems with faults changing system dynamics," Journal of Process Control, vol. 43, pp. 10-23, 2016. [DOI:10.1016/j.jprocont.2016.04.004]
40. [40] X. Wang, X. Li, J. Wang, X. Fang, and X. Zhu, "Data-driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton," Information Sciences, vol. 327, pp. 246-257, 2016. [DOI:10.1016/j.ins.2015.08.025]
41. [41] Z. Wang, A. Behal, and P. Marzocca, "Model-free control design for multi-input multi-output aeroelastic system subject to external disturbance," Journal of Guidance, Control, and Dynamics, vol. 34, no. 2, pp. 446-458, 2011. [DOI:10.2514/1.51403]
42. [42] S. Wakitani, and T. Yamamoto, "Design and application of a data-driven PID controller," IEEE Conference on Control Applications (CCA), pp. 1443-1448, 2014. [DOI:10.1109/CCA.2014.6981527]
43. [43] R. Hildebrand, A. Lecchini, G. Solari, and M. Gevers, "Asymptotic accuracy of iterative feedback tuning," IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1182-1185, 2005. [DOI:10.1109/TAC.2005.852551]
44. [44] Z. Hou, S. Liu, and T. Tian, "Lazy-learning-based data-driven model-free adaptive predictive control for a class of discrete-time nonlinear systems," IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 8, pp. 1914-1928, 2016. [DOI:10.1109/TNNLS.2016.2561702]
45. [45] H. Zhang, J. Zhou, Q. Sun, J.M. Guerrero, and D. Ma, "Data-driven control for interlinked AC/DC microgrids via model-free adaptive control and dual-droop control," IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 557-571, 2015. [DOI:10.1109/TSG.2015.2500269]
46. [46] Z.S. Hou, and Z. Wang, "From model-based control to data-driven control: Survey, classification and perspective," Information Sciences, vol. 235, pp. 3-35, 2013. [DOI:10.1016/j.ins.2012.07.014]
47. [47] Z. Hou, and S. Jin, Model free adaptive control: theory and applications, CRC press. 2014 [DOI:10.1201/b15752]
48. [48] Z. Hou, and S. Jin, "A novel data-driven control approach for a class of discrete-time nonlinear systems," IEEE Transactions on Control Systems Technology, vol. 19, no. 6, pp. 1549-1558, 2010. [DOI:10.1109/TCST.2010.2093136]
49. [49] D. Xu, B. Jiang, and P. Shi, "A novel model-free adaptive control design for multivariable industrial processes," IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6391-6398, 2014. [DOI:10.1109/TIE.2014.2308161]
50. [50] Z. Hou, and S. Jin, "Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems," IEEE Transactions on Neural Networks, vol. 22, no. 12, pp. 2173-2188, 2011. [DOI:10.1109/TNN.2011.2176141]
51. [51] Z. Hou, and Y. Zhu, "Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems," IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2301-2309, 2013. [DOI:10.1109/TII.2013.2257806]
52. [52] H. Baruh, Analytical dynamics, Boston: WCB/McGraw-Hill, 1999.
53. [53] D.T. Greenwood, Advanced dynamics, Cambridge University Press, 2006.
54. [54] M. Khosravi, and A.B. Novinzadeh, Comment on "Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles," AIAA Journal, vol. 57, no. 5, pp. 2195-2197, 2019. [DOI:10.2514/1.J056554]
55. [55] C.P. Ellington, "The aerodynamics of hovering insect flight. I. The quasi-steady analysis," Philosophical Transactions of the Royal Society of London. B, Biological Sciences, vol. 305, no. 1122, pp. 1-15, 1984. [DOI:10.1098/rstb.1984.0049]
56. [56] S.P. Sane, "The aerodynamics of insect flight," Journal of experimental biology, vol. 206, no. 23, pp. 4191-4208, 2003. [DOI:10.1242/jeb.00663]
57. [57] C. Badrya, B. Govindarajan, J. D. Baeder, A. Harrington, and C. M. Kroninger, "Computational and Experimental Investigation of a Flapping-Wing Micro Air Vehicle in Hover," Journal of Aircraft, vol. 56, no. 4, pp. 1610-1625, 2019. [DOI:10.2514/1.C035239]
58. [58] M.H. Dickinson, F.O. Lehmann, and S.P. Sane, "Wing rotation and the aerodynamic basis of insect flight," Science, vol. 284, no. 5422, pp. 1954-1960, 1999. [DOI:10.1126/science.284.5422.1954]
59. [59] X. Deng, L. Schenato, W.C. Wu, and S.S. Sastry, "Flapping flight for biomimetic robotic insects: Part I-system modeling," IEEE Transactions on Robotics, vol. 22, no. 4, pp. 776-788, 2006. [DOI:10.1109/TRO.2006.875480]
60. [60] S.P. Sane, and M.H. Dickinson, "The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight," Journal of Experimental Biology, vol. 205, no. 8, pp. 1087-1096, 2002. [DOI:10.1242/jeb.205.8.1087]
61. [61] S.A. Ansari, R. Żbikowski, and K. Knowles, "Aerodynamic modelling of insect-like flapping flight for micro air vehicles," Progress in Aerospace Sciences, vol. 42, no. 2, pp. 129-172, 2006. [DOI:10.1016/j.paerosci.2006.07.001]
62. [62] G.J. Berman, and Z.J. Wang, "Energy-minimizing kinematics in hovering insect flight," Journal of Fluid Mechanics, vol. 582, pp. 153-168, 2007. [DOI:10.1017/S0022112007006209]
63. [63] S. Mao, and D.U. Gang, "Lift and power requirements of hovering insect flight," Acta Mechanica Sinica, vol. 19, no. 5, pp. 458-469, 2003. [DOI:10.1007/BF02484580]
64. [64] A. Mouy, A. Rossi, and H. E. Taha, "Coupled Unsteady Aero-Flight Dynamics of Hovering Insects/Flapping Micro Air Vehicles," Journal of Aircraft, vol. 54, no. 5, pp. 1738-1749, 2017. [DOI:10.2514/1.C034205]
65. [65] H. Gopalan and A. Povitsky, "Lift Enhancement of Flapping Airfoils by Generalized Pitching Motion," Journal of Aircraft, vol. 47, no. 6, pp. 1884-1897, 2010. [DOI:10.2514/1.47219]
66. [66] S. P Sane, and M.H. Dickinson, "The control of flight force by a flapping wing: lift and drag production," Journal of Experimental Biology, vol. 204, no. 15, pp. 2607-2626, 2001. [DOI:10.1242/jeb.204.15.2607]
67. [67] D. B. Mayo, J. L. Lankford, M. Benedict, and I. Chopra, "Experimental and Computational Analysis of Rigid Flapping Wings for Micro Air Vehicles," Journal of Aircraft, vol. 52, no. 4, pp. 1161-1178, 2015. [DOI:10.2514/1.C032853]
68. [68] S. Deng, J. Wang, and H. Liu, "Experimental study of a bio-inspired flapping wing MAV by means of force and PIV measurements," Aerospace Science and Technology, vol. 94, p. 105382, 2019. [DOI:10.1016/j.ast.2019.105382]
69. [69] H. V. Phan and H. C. Park, "Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions," Progress in Aerospace Sciences, vol. 111, p. 100573, 2019. [DOI:10.1016/j.paerosci.2019.100573]
70. [70] X. Bu, Z. Hou, F. Yu, and F. Wang, "Robust model free adaptive control with measurement disturbance," IET Control Theory & Applications, vol. 6, no. 9, pp. 1288-1296, 2012. [DOI:10.1049/iet-cta.2011.0381]
71. [71] A. Bartoszewicz, and P. Latosiński, "Discrete time sliding mode control with reduced switching-a new reaching law approach," International Journal of Robust and Nonlinear Control, vol. 26, no. 1, pp. 47-68, 2016. [DOI:10.1002/rnc.3291]
72. [72] T.L. Hedrick, and T.L. Daniel, "Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering," Journal of Experimental Biology, vol. 209, no. 16, pp. 3114-3130, 2006. [DOI:10.1242/jeb.02363]
73. [73] H. Nobahari, M. Nikusokhan, and P. Siarry, "A multi-objective gravitational search algorithm based on non-dominated sorting," International Journal of Swarm Intelligence Research (IJSIR), vol. 3, no. 3, pp. 32-49, 2012. [DOI:10.4018/jsir.2012070103]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb