Volume 15, Issue 2 (Journal of Control, V.15, N.2 Summer 2021)                   JoC 2021, 15(2): 107-116 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afkar M, Rahmati Khorramabadi M, Mahmoodian Yonesi S, Gavagsaz Ghoachani R, Pierfederici S. A control method for a DC-DC boost converter with an LC input filter based on Lyapunov function. JoC. 2021; 15 (2) :107-116
URL: http://joc.kntu.ac.ir/article-1-771-en.html
1- Shahid Beheshti University
2- Université de Lorraine
Abstract:   (6009 Views)
The use of the input low-pass filter causes instability in DC-DC converters. These instabilities occur because of the interaction between the filter and the converter. In this paper, a control method based on Lyapunov is proposed. This control method uses the exact system model without linearization. All state variables are controlled using an instantaneous model. A new state variable is defined to reduce the static output voltage error. No condition is necessary to implement the control strategy. The simulation and experimental results are presented to validate the proposed control method.
 
Full-Text [PDF 821 kb]   (8 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2020/06/12 | Accepted: 2020/09/12 | ePublished ahead of print: 2020/10/13

References
1. [1] J. J. More, P. F. Puleston, C. Kunusch, and M. A. Fantova, "Development and Implementation of a Supervisor Strategy and Sliding Mode Control Setup for Fuel-Cell-Based Hybrid Generation Systems," IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 218-225, Mar. 2015. [DOI:10.1109/TEC.2014.2354553]
2. [2] M. Kumar, S. C. Srivastava, and S. N. Singh, "Control Strategies of a DC Microgrid for Grid Connected and Islanded Operations," IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1588-1601, Jul. 2015. [DOI:10.1109/TSG.2015.2394490]
3. [3] R. Gavagsaz-Ghoachani, J. P. Martin, B. Nahid-Mobarakeh, and B. Davat, "An e-learning tool for power control and energy management in DC microgrids," in Proc. IEEE e-Learning in Ind. Electron., Nov. 2013, pp. 102-107. [DOI:10.1109/ICELIE.2013.6701281]
4. [4] A. Garcia-Bediaga, I. Villar, A. Rujas, I. Etxeberria-Otadui, and A. Rufer, "Analytical Models of Multiphase Isolated Medium-Frequency dc-dc Converters," IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2508-2520, Apr. 2017. [DOI:10.1109/TPEL.2016.2570941]
5. [5] A. Villarruel-Parra, and A. J. Forsyth, "Enhanced Average-Value Modelling of Interleaved DC-DC Converters Using Sampler Decomposition," IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2290-2299, Mar. 2017. [DOI:10.1109/TPEL.2016.2559449]
6. [6] P. Magne, D. Marx, B. Nahid-Mobarakeh, and S. Pierfederici, "Large signal stabilization of a DC-link supplying a constant power load using a virtual capacitor: Impact on the domain of attraction," IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 878-887, May/Jun. 2012. [DOI:10.1109/TIA.2012.2191250]
7. [7] M. Karbalaye Zadeh, R. Gavagsaz-ghoachani, J. P. Martin, S. Pierfederici, B. Nahid-Mobarakeh, and M. Molinas, "Discrete-Time Tool for Stability Analysis of DC Power Electronics Based Cascaded Systems," IEEE Trans. Power Electron., vol. 32, no. 1, pp. 652-667, Jan. 2017. [DOI:10.1109/TPEL.2016.2526740]
8. [8] L. M. Saublet, R. Gavagsaz-Ghoachani, J. P. Martin, B. Nahid-Mobarakeh, and S. Pierfederici, "Asymptotic Stability Analysis of the Limit Cycle of a Cascaded DC-DC Converter Using Sampled Discrete-Time Modeling," IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2477-2487, Apr. 2016. [DOI:10.1109/TIE.2015.2509908]
9. [9] R. Gavagsaz-Ghoachani, J. P. Martin, S. Pierfederici, B. Nahid-Mobarakeh, and B. Davat, "DC Power Networks With Very Low Capacitances for Transportation Systems: Dynamic Behavior Analysis," IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5865-5877, Dec. 2013. [DOI:10.1109/TPEL.2013.2248024]
10. [10] M. Wu, and D. D. C. Lu, "A Novel Stabilization Method of LC Input Filter With Constant Power Loads Without Load Performance Compromise in DC Microgrids," IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4552-4562, Jul. 2015. [DOI:10.1109/TIE.2014.2367005]
11. [11] M. Cespedes, L. Xing, and J. Sun, "Constant-Power Load System Stabilization by Passive Damping," IEEE Trans. Power Electron., vol. 26, no. 7, pp. 1832-1836, Jul. 2011. [DOI:10.1109/TPEL.2011.2151880]
12. [12] A. B. Awan, S. Pierfederici, B. Nahid-Mobarakeh, and F. Meibody-Tabar, "Active stabilization of a poorly damped input filter supplying a constant power load," in Proc. IEEE Energy Convers. Cong. Expo., 2009, pp. 2991-2997. [DOI:10.1109/ECCE.2009.5316102]
13. [13] R. Gavagsaz-ghoachani et al., "A Lyapunov Function for Switching Command of a DC - DC Power Converter With an LC Input Filter," IEEE Trans. Power Electron., vol. 53, no. 5, pp. 5041-5050, 2017. [DOI:10.1109/TIA.2017.2715325]
14. [14] P. Riedinger, and J. C. Vivalda, "Dynamic output feedback for switched linear systems based on a LQG design," Automatica, vol. 54, pp. 235-245, 2015. [DOI:10.1016/j.automatica.2015.02.007]
15. [15] C. Albea, G. Garcia, and L. Zaccarian, "Hybrid dynamic modeling and control of switched affine systems: Application to DC-DC converters," in Proc IEEE Conf. Decis. Control, 2015, pp. 2264-2269. [DOI:10.1109/CDC.2015.7402544]
16. [16] G. Deaecto, J. Geromel, F. Garcia, and J. Pomilio, "Switched affine systems control design with application to DC-DC converters", IET Control Theory Appl., vol. 4, no. 7, pp. 1201-1210, 2010. [DOI:10.1049/iet-cta.2009.0246]
17. [17] F. S. Garcia, J. A. Pomilio, G. S. Deaecto, and J. C. Geromel, "Analysis and control of DC-DC converters based on Lyapunov Stability Theory," in Proc. IEEE Energy Convers. Cong. Expo., 2009, pp. 2920-2927. [DOI:10.1109/ECCE.2009.5316085]
18. [18] S. R. Sanders, and G. C. Verghese "Lyapunov-Based Control for Switched Power Converters," IEEE Trans. Power Electron., vol. 7, no. 1, pp. 17-24, Jan. 1992. [DOI:10.1109/63.124573]
19. [19] P. Hauroigne, P. Riedinger, and C. Iung, "Switched Affine Systems Using Sampled-Data Controllers: Robust and Guaranteed Stabilization," IEEE Trans. Autom. Control, vol. 56, no. 12, pp. 2929-2935, Dec. 2011. [DOI:10.1109/TAC.2011.2160598]
20. [20] W. Cai, F. Yi, E. Cosoroaba, and B. Fahimi, "Stability Optimization Method Based on Virtual Resistor and Nonunity Voltage Feedback Loop for Cascaded DC-DC Converters," IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4575-4583, Nov.-Dec. 2015. [DOI:10.1109/TIA.2015.2443717]
21. [21] A. Emadi, and M. Ehsani, "Negative impedance stabilizing controls for PWM DC-DC converters using feedback linearization techniques," in Proc. 35th Intersoc. Energy Convers. Eng. Conf. Exhi., 2000, pp. 613-620. [DOI:10.2514/6.2000-2912]
22. [22] A. M. Rahimi, G. A. Williamson, and A. Emadi, "Loop-Cancellation Technique: A Novel Nonlinear Feedback to Overcome the Destabilizing Effect of Constant-Power Loads," IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 650-661, Feb. 2010. [DOI:10.1109/TVT.2009.2037429]
23. [23] X. Wang, Y. W. Li, F. Blaabjerg, and P. C. Loh, "Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters," IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7019-7037, Dec. 2015. [DOI:10.1109/TPEL.2014.2382565]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb