Volume 15, Issue 4 (Journal of Control, V.15, N.4 Winter 2022)                   JoC 2022, 15(4): 59-69 | Back to browse issues page


XML Persian Abstract Print


1- Shahid Behesti university (Shahid Abbaspour)
2- ASMERC
Abstract:   (2837 Views)
The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging.  Weather radars are capable of detecting and displaying storm-related turbulence as well as precipitation in a relatively wide area. This capability can improve the quality of the wind forecast. In this paper, a method is presented and implemented to forecast the probability of strong wind in the next five hours based on the Hidden Markov Model (HMM). The method is expanded to find out the forecast of wind turbine output power and reliability as well. Achieved results show that about 67% of strong winds are correctly forecasted
Full-Text [PDF 1028 kb]   (173 Downloads)    
Type of Article: Review paper | Subject: Special
Received: 2020/08/26 | Accepted: 2021/04/25 | ePublished ahead of print: 2021/05/12 | Published: 2021/12/22

References
1. [1] ا. زرجو، م. مظفری، ب. امرایی، "کنترل توربین بادی با ژنراتور القایی دوگانه تغذیه (DFIG) جهت استحصال حداکثر توان قابل جذب (MPPT)،" مجله کنترل، جلد 8، شماره 4، صفحه 43-53، 1393.
2. [2] ع. دقیق، م. ابراهیمی، ح. جوادی، "طراحی و کنترل ژنراتور مغناطیس دائم شار محور بدون هسته جهت استحصال بیشترین توان از توربین بادی سرعت متغیر،" مجله کنترل، جلد 11، شماره 2، صفحه 31-41، 1396.
3. [3] و. شجاع¬الدینی، آ. پارسیان¬نژاد، م. فرزانه، "روشی جدید برای استحصال توان بهینه از توربین های بادی: مدل زمانی-مکانی برای مزرعه بادی با استراتژی نروفازی،"،مجله کنترل، جلد 6، شماره 3، صفحه 51-60، 1391.
4. [4] S. Kanev and T. van Engelen, "Wind turbine extreme gust control," Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, vol. 13, no. 1, pp. 18-35, 2010. [DOI:10.1002/we.338]
5. [5] W.-Y. Chang, "A literature review of wind forecasting methods," Journal of Power and Energy Engineering, vol. 2, no. 4, pp. 161, 2014. [DOI:10.4236/jpee.2014.24023]
6. [6] F. Tagliaferri, B.P. Hayes, I.M. Viola, S.Z. Djokić, "Wind modelling with nested Markov chains," Journal of Wind Engineering and Industrial Aerodynamics, vol. 157, pp. 118-124, 2016. [DOI:10.1016/j.jweia.2016.08.009]
7. [7] P.-J. Trombe, P. Pinson, and H. Madsen, "Automatic classification of offshore wind regimes with weather radar observations," IEEE Journal of selected topics in applied earth observations and remote sensing, vol. 7, no. 1, pp. 116-125, 2013. [DOI:10.1109/JSTARS.2013.2252604]
8. [8] ن. چینی فروش، غ. لطیف شبگاهی، م. آزادی، "ارائه الگوریتم جدید برای پیش‌بینی سرعت باد مبتنی بر مدل پنهان مارکوف،" مجله ژئوفیزیک ایران، جلد 13، شماره 2، صفحه 86-106، 1398.
9. [9] D. Schlipf, D.J. Schlipf, and M. Kühn, "Nonlinear model predictive control of wind turbines using LIDAR," Wind energy, vol. 16, no. 7, pp. 1107-1129, 2013. [DOI:10.1002/we.1533]
10. [10] P.J. Trombe, et al., "Weather radars-the new eyes for offshore wind farms?," Wind Energy, vol. 17, no. 11, pp. 1767-1787, 2014. [DOI:10.1002/we.1659]
11. [11] R.J. Doviak, "Doppler radar and weather observations," Courier Corporation, 2006.
12. [12] ن. چینی فروش، غ. لطیف شبگاهی، "تجهیزات انداز‌ه‌گیری سرعت و جهت باد: روش‌ها، چالش‌ها و روند فنّاوری،" پژوهش های اقلیم شناسی، جلد 1397، شماره 33، صفحه 43-62، 2018.
13. [13] A. Keyhani, M. Ghasemi-Varnamkhasti, M.T. Khanali, R. Abbaszadeh, "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, vol. 35, no. 1, pp. 188-201, 2010. [DOI:10.1016/j.energy.2009.09.009]
14. [14] G.D. Forney, "The viterbi algorithm," Proceedings of the IEEE, vol 61, no. 3, pp. 268-278, 1973. [DOI:10.1109/PROC.1973.9030]
15. [15] M. Dabernig, "Comparison of different numerical weather prediction models as input for statistical wind power forecasts," University of Innsbruck, 2013.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.