Volume 16, Issue 1 (Journal of Control, V.16, N.1 Spring 2022)                   JoC 2022, 16(1): 63-72 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmati khorramabadi M, Shahrouei Z, Gavagsaz-ghoachani R. Sensorless flatness based control for a boost converter. JoC. 2022; 16 (1) :63-72
URL: http://joc.kntu.ac.ir/article-1-805-en.html
1- Shahid Beheshti University
2- Shahid Beheshti university
Abstract:   (2520 Views)
In this paper, a sensorless flatness based controller with nonlinear observer for non-ideal boost converter is proposed. Losses are modeled with a voltage source series with input and a current source parallel to output. By a one-loop control structure with flatness property, both output voltage and inductor current is regulated. But, flatness based control is a model based method and requires extra sensors for obtaining data of all system parameters. For reducing numbers of sensors, a nonlinear observer is used to estimate output current and input voltage. So, sensors of these two parameters are eliminated. Simulation and experimental results are given to validate the proposed controller and robustness of proposed controller to variation of system parameters is obvious. In addition, simulation results of proposed controller are compared with a two-loop controller including PI and energy control
Full-Text [PDF 1414 kb]   (54 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2020/11/20 | Accepted: 2021/08/8 | ePublished ahead of print: 2021/09/4

1. [1] Yazici and E. Kürs, "Fast and robust voltage control of DC-DC boost converter by using fast terminal sliding mode controller," IET Power Electronics, vol. 9, no. 1, pp. 120-125, 2016. [DOI:10.1049/iet-pel.2015.0008]
2. [2] A. Mesbahi, Y. Aljarhizi, A. Hassoune, M. Khafallah and E. Alibrahmi, "Boost converter implementation for wind generation system based on a variable speed PMSG,"1st International Conference on Innovative Research in Applied Science, Engineering and Technology, pp. 1-6, 2020. [DOI:10.1109/IRASET48871.2020.9092143]
3. [3] A. Janabi, B. Wang, "Switched-capacitor voltage boost converter for electric and hybrid electric vehicle drives," IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 5615-5624, 2020. [DOI:10.1109/TPEL.2019.2949574]
4. [4] A. K. Mishra and B. Singh, "Performance optimization of grid-interactive switched reluctance motor-driven SPWPS utilizing a new structure of boost converter," IEEE 9th Power India International Conference, pp. 1-6, 2020. [DOI:10.1109/PIICON49524.2020.9112969]
5. [5] M. Malekzadeh, A. Khosravi, M. Tavan "A novel adaptive output feedback control for DC-DC boost converter using immersion and invariance observer," Evolving Systems, pp. 707-715, 2020. [DOI:10.1007/s12530-019-09268-7]
6. [6] M. Malekzadeh, A. Khosravi, and M. Tavan "Observer based control scheme for DC-DC boost converter using sigma-delta modulator," The international journal for computation and mathematics in electrical and electronic engineering, vol. 37, no. 2, pp.784-798, 2017. [DOI:10.1108/COMPEL-02-2017-0102]
7. [7] N. Femia, K. Stoyka, G. Di Capua, "Impact of inductors saturation on peak-current mode control operation," IEEE Transactions on Power Electronics, vol. 35, no. 10, pp. 10969-10981, 2020. [DOI:10.1109/TPEL.2020.2974939]
8. [8] I. J. Prasuna, M. S. Kavya, K. Suryanarayana and B. R. Shrinivasa Rao, "Digital peak current mode control of boost converter, " Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives Kottayam, pp. 1-6, 2014. [DOI:10.1109/AICERA.2014.6908220]
9. [9] Z. B. Duranay, H. Guldemir, S. Tuncer, "Fuzzy sliding mode control of DC-DC boost converter," Engineering, Technology & Applied Science Research, vol. 8, no. 3, pp. 3054-3059, 2018. [DOI:10.48084/etasr.2116]
10. [10] R. Saadi et al., "Dual loop controllers using PI , sliding mode and flatness controls applied to low voltage converters for fuel cell applications," Int. J. Hydrogen Energy, vol. 41, no. 42, pp. 19154-19163, 2016. [DOI:10.1016/j.ijhydene.2016.08.171]
11. [11] M. Fliess, J. Levine, P. Martin, and P. Rouchon, "Flatness and defect of non-linear systems: introductory theory and examples," Int. J. Control, pp. 1327-1361, 1995. [DOI:10.1080/00207179508921959]
12. [12] P. B. Ngancha, K. Kusakana, and E. Markus, "A survey of differential flatness-based control applied to renewable energy sources," IEEE PES Power Africa, pp. 371-379, 2017. [DOI:10.1109/PowerAfrica.2017.7991253]
13. [13] L. Gil-antonio, B. Saldivar, and O. Portillo-rodríguez, "Trajectory tracking control for a boost converter based on the differential flatness property," IEEE Access, vol. 7, pp. 63437-63446, 2019. [DOI:10.1109/ACCESS.2019.2916472]
14. [14] Q. Li, Y. Huangfu, L. Xu, and D. Zhao, "Robust flatness based control with disturbance observers of non-ideal boost converter for electric vehicles," IEEE Tranportation Electrification Conference and Expo, pp. 1-6, 2019. [DOI:10.1109/ITEC.2019.8790464]
15. [15] A. Hussain, H. Ahmed, A. Faisal, and K. Al-haddad, "a novel sensor-less current technique for photovoltaic system using DC transformer model based model predictive control," Elec. Power Energy Syst., vol. 122, 2020. [DOI:10.1016/j.ijepes.2020.106165]
16. [16] W. Qiao, "Intelligent mechanical sensorless MPPT control for wind energy systems," IEEE Power Energy Soc. Gen. Meet., pp. 1-8, 2012. [DOI:10.1109/PESGM.2012.6345443]
17. [17] M. A. S. Ali, K. K. Mehmood, S. Baloch, and C. H. Kim, "Wind-speed estimation and sensorless control for SPMSG-based WECS using LMI-based SMC," IEEE Access, vol. 8, pp. 26524-26535, 2020. [DOI:10.1109/ACCESS.2020.2971721]
18. [18] H. Cho, S. J. Yoo, and S. Kwak, "State observer based sensor less control using Lyapunov's method for boost converters," IET Power Electron., vol. 8, no. 1, pp. 11-19, 2015. [DOI:10.1049/iet-pel.2013.0920]
19. [19] Q. Li, Y. Huangfu, L. Xu, D. Zhao, and F. Gao, "Robust adaptive flatness based control for non-ideal boost converter in fuel cell electric vehicles," IEEE International Conference on Industrial Technology, pp. 1707-1712, 2019. [DOI:10.1109/ICIT.2019.8843698]
20. [20] A. Shahin, A. Payman, J. Martin, and S. Pierfederici, "Approximate novel loss formulae estimation for optimization of power controller of DC/DC converter," 36th Annual Conference on IEEE Industrial Electronics Society, pp. 373-378, 2010. [DOI:10.1109/IECON.2010.5674999]
21. [21] M. Mehrasa, E. Pouresmaeil, S. Taheri, I. Vechiu, and J. P. S. Catalão, "Novel control strategy for modular multilevel converters based on differential flatness theory," IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 2, pp. 888-897, 2018. [DOI:10.1109/JESTPE.2017.2766047]
22. [22] H. Renaudineau, J. Martin, B. Nahid-Mobarakeh, and S. Pierfederici, "DC-DC converters dynamic modeling with state observer-based parameter estimation," IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3356-3363, 2015. [DOI:10.1109/TPEL.2014.2334363]
23. [23] R. Gavagsaz-Ghoachani, M. Phattanasak, J. Martin, S. Pierfederici, B. Nahidmobarakeh, and P. Riedinger, "Observer and Lyapunov-based control for switching power converters with LC input filter," IEEE Trans. Power Electron., vol. 34, no. 7, pp. 7053-7066, 2018. [DOI:10.1109/TPEL.2018.2877180]
24. [24] J. Levine, "Differentialy flat systems," in Analysis and control of nonlinear systems, a flatness-based approach, Springer Dordrecht Heidelberg, 2009, p. 318.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb