دوره 14، شماره 5 - ( جلد 14، شماره 5، ویژه نامه کووید-19 1400 )                   جلد 14 شماره 5,1400 صفحات 59-70 | برگشت به فهرست نسخه ها

XML English Abstract Print


1- دانشگاه کاشان
2- دانشگاه شاهد
3- دانشگاه علوم پزشکی کاشان
چکیده:   (686 مشاهده)
با توجه به شیوع گسترده پاندمی ویروس کرونا (کووید-19) در سراسر جهان، مدل های ریاضی می توانند به پیش بینی و کنترل این پاندمی کمک کنند. از این رو، در این مقاله ابتدا یک مدل جامع برای بررسی روند بیماری کووید-19 مبتنی بر افراد مستعد، درمعرض، عفونی (باعلامت و بدون علامت) و بهبودیافته در نظر گرفته می شود. سپس با توجه به فقدان هرگونه واکسیناسیون عمومی یا درمان موثر، گروه افراد «در قرنطینه» به مدل مذکور اضافه می شود. پس از بررسی مثبت بودن حالات و محاسبه معیار آستانه (R_0) به محاسبه نقاط تعادل (تعادل بدون بیماری و اندمیک) پرداخته و پایداری آن ها با استفاده از ماتریس ژاکوبین بررسی می شود. در ادامه، توسط یک کنترل¬کننده فازی مد لغزشی، نرخ قرنطینه سازی به عنوان تنها ورودی کنترلی بیماری تعیین و تنظیم می گردد. میزان کارایی کنترل کننده نیز در حضور عدم قطعیت پارامترهای مدل بررسی می شود که نتایج حاصل، مؤید عملکرد مطلوب آن است. همچنین، تأثیر جامعه آلوده بر سایر جوامع در حضور کنترل کننده بررسی خواهد شد. در نهایت، عملکرد و کارایی کنترل کننده توسط شبیه‏ سازی، مورد ارزیابی قرار می¬گیرد.
متن کامل [PDF 911 kb]   (240 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: کووید 19
دریافت: 1399/10/10 | پذیرش: 1399/12/18 | انتشار: 1399/12/10

فهرست منابع
1. مرکز تحقیقات ویروس شناسی (www.vrc.sbmu.ac.ir)
2. World Health Organization (WHO) (www.who.int/ar/emergencies/diseases/novel-coronavirus-2019-farsi)
3. Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects.html)
4. "Iran Reports Its First 2 Cases of the New Coronavirus", New York Times. Archived from the original on 19 February 2020. Retrieved 19 February 2020.
5. Cooper, I., Mondal, A. and Antonopoulos, C.G., "A SIR Model Assumption for The Spread of COVID-19 in Different Communities", Chaos, Solitons & Fractals, 139, p.110057, 2020. [DOI:10.1016/j.chaos.2020.110057]
6. Comunian, A., Gaburro, R. and Giudici, M., "Inversion of an SIR-Based Model: A Critical Analysis About the Application To COVID-19 Epidemic", Physica D: Nonlinear Phenomena, 413, p.132674, 2020. [DOI:10.1016/j.physd.2020.132674]
7. Abbasi, Z., Zamani, I., Amiri Mehra, A.H., and Shafieirad, M., "Optimal Control of SEIR Epidemic Model Considering Nonlinear Transmission Rate and Time Delay", In 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). IEEE, 2021. [DOI:10.1109/ICCIA52082.2021.9403558]
8. Kada, D., Kouidere, A., Balatif, O., Rachik, M. and Labriji, E.H., "Mathematical Modeling of The Spread of COVID-19 Among Different Age Groups in Morocco: Optimal Control Approach for Intervention Strategies", Chaos, Solitons & Fractals, p.110437, 2020. [DOI:10.1016/j.chaos.2020.110437]
9. Samui, P., Mondal, J. and Khajanchi, S., "A Mathematical Model for COVID-19 Transmission Dynamics with A Case Study of India", Chaos, Solitons & Fractals, 140, p.11017, 2020. [DOI:10.1016/j.chaos.2020.110173]
10. Ndairou, F., Area, I., Nieto, J.J. and Torres, D.F., "Mathematical Modeling of COVID-19 Transmission Dynamics with a Case Study of Wuhan". Chaos, Solitons & Fractals, p.109846, 2020. [DOI:10.1016/j.chaos.2020.109846]
11. Amiri Mehra, A.H., Zamani, I., Abbasi, Z. and Ibeas, A., "Observer-Based Adaptive PI Sliding Mode Control of Developed Uncertain SEIAR Influenza Epidemic Model Considering Dynamic Population", Journal of Theoretical Biology, 482, p.109984, 2019. [DOI:10.1016/j.jtbi.2019.08.015]
12. Abbasi, Z., Zamani, I., Amiri Mehra, A.H., Shafieirad, M. and Ibeas, A., "Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19", Chaos, Solitons & Fractals, 139, p.110054, 2020. [DOI:10.1016/j.chaos.2020.110054]
13. Amiri Mehra, A.H., Shafieirad, M, Abbasi, Z. and Zamani, I., "Parameter Estimation and Prediction of COVID-19 Epidemic Turning Point and Ending Time of a Case Study on SIR/SQAIR Epidemic Models", Computational and Mathematical Methods in Medicine, 2020, 2020. [DOI:10.1155/2020/1465923]
14. Rohith, G. and Devika, K.B., "Dynamics and Control of COVID-19 Pandemic with Nonlinear Incidence Rates", Nonlinear Dynamics, 101(3), pp.2013-2026, 2020. [DOI:10.1007/s11071-020-05774-5]
15. Xiao, Y., Xu, X. and Tang, S., "Sliding Mode Control of Outbreaks of Emerging Infectious Diseases", Bulletin of Mathematical Biology, 74(10), pp.2403-2422, 2012. [DOI:10.1007/s11538-012-9758-5]
16. Ibeas, A., de la Sen, M. and Alonso-Quesada, S., "Sliding Mode Robust Control of SEIR Epidemic Models", In 2013 21st Iranian Conference on Electrical Engineering (ICEE). pp. 1-6. IEEE, 2013. [DOI:10.1109/IranianCEE.2013.6599820]
17. Ozer, H.O., Hacioglu, Y., Yagiz, N., "Controlling the Building Model Using High Order Sliding Mode Control Optimized by Multi Objective Genetic Algorithm", Periodicals of Engineering and Natural Sciences, 5(3), 2017. [DOI:10.21533/pen.v5i3.91]
18. Yakut, O. and Alli, H., "Neural Based Sliding-Mode Control with Moving Sliding Surface for the Seismic Isolation of Structures", Journal of Vibration and Control, 17(14), pp.2103-2116, 2011. [DOI:10.1177/1077546310395964]
19. Li, Z., Deng, Z. and Gu, Z., "New Sliding Mode Control of Building Structure Using RBF Neural Networks", In 2010 Chinese Control and Decision Conference. pp. 2820-2825. IEEE, 2010.
20. Adhikari, R. and Yamaguchi, H., "Sliding Mode Control of Buildings with ATMD", Earthquake Engineering & Structural Dynamics, 26(4), pp.409-422, 1997. https://doi.org/10.1002/(SICI)1096-9845(199704)26:4<409::AID-EQE647>3.0.CO;2-0 [DOI:10.1002/(SICI)1096-9845(199704)26:43.0.CO;2-0]
21. Baghaei, K., Ghaffarzadeh, H., Hadigheh, A. and Dias-da-Costa, D., "Chattering-Free Sliding Mode Control with A Fuzzy Model for Structural Applications", 2019.
22. Samantaray, J. and Chakrabarty, S., "A Fuzzy Sliding Mode Control Design for Quadcopter", In International Conference on Unmanned Aerial System in Geomatics. pp. 191-200, 2019, April. [DOI:10.1007/978-3-030-37393-1_17]
23. Ardakani, F.F., Vatankhah, R. and Sharifi, M., "Fuzzy Sliding‐Mode Control of a Human Arm in The Sagittal Plane with Optimal Trajectory", ETRI Journal, 40(5), pp.653-663, 2018. [DOI:10.4218/etrij.2018-0067]
24. Zamani, I., Amiri Mehra, A.H., Abbasi, Z. and Shafiee, M., "Robust Stability for Affine TS Fuzzy Impulsive Control Systems Subject to Parametric Uncertainties", In 2019 27th Iranian Conference on Electrical Engineering (ICEE). pp. 1102-1107. IEEE, 2019. [DOI:10.1109/IranianCEE.2019.8786425]
25. Lin, B., Su, X. and Li, X., "Fuzzy Sliding Mode Control for Active Suspension System with Proportional Differential Sliding Mode Observer", Asian Journal of Control, 21(1), pp.264-276, 2019. [DOI:10.1002/asjc.1882]
26. Palm, R., 1992, "Sliding Mode Fuzzy Control", In [1992 Proceedings] IEEE International Conference on Fuzzy Systems. pp. 519-526. IEEE, 1992.
27. Ha, Q.P., Nguyen, Q.H., Rye, D.C. and Durrant-Whyte, H.F., "Fuzzy Sliding-Mode Controllers with Applications", IEEE Transactions on Industrial Electronics, 48(1), pp.38-46, 2001. [DOI:10.1109/41.904548]
28. Zamani, I. and Zarif, M.H., "Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums". World Academy of Science, Engineering and Technology, 1(10), pp.1596-1602, 2007.
29. Zamani, I. and Shafie, M., "Fuzzy Affine Impulsive Controller". In 2009 IEEE International Conference on Fuzzy Systems. pp. 361-366, 2009. [DOI:10.1109/FUZZY.2009.5277121]
30. Zamani, I. and Zarif, M.H., "An Approach for Stability Analysis of TS Fuzzy Systems Via Piecewise Quadratic Stability", International Journal of Innovative Computing, Information and Control, 6(9), pp.4041-4054, 2010.
31. Zamani, I. and Zarif, M.H., "On the Continuous-Time Takagi-Sugeno Fuzzy Systems Stability Analysis", Applied Soft Computing, 11(2), pp.2102-2116, 2011. [DOI:10.1016/j.asoc.2010.07.009]
32. Zamani, I. and Sadati, N., "Fuzzy Large-Scale Systems Stabilization with Nonlinear State Feedback Controller", 2009 IEEE International Conference on Systems, Man and Cybernetics, 5156-5161. [DOI:10.1109/ICSMC.2009.5346005]
33. Shafieirad, M., Shafiee, M. and Abedi, M., "Recursive Identification of Continuous Two-Dimensional Systems in The Presence of Additive Colored Noise", IETE Journal of Research, 60(1), pp.74-84, 2014. [DOI:10.1080/03772063.2014.890830]
34. Shafieirad, M., Shafiee, M. and Abedi, M., "Estimation of Space and Time Shifts in Continuous 2-D Systems Using Instrumental Variable", Canadian Journal of Electrical and Computer Engineering, 37(1), pp.42-47, 2014. [DOI:10.1109/CJECE.2014.2311927]
35. Shafieirad, M., Shafiee, M. and Abedi, M., "Identification of Linear Partial Difference Equations with Constant Coefficients", Journal of Basic and Applied Scientific Research, 3(1), pp.655-660, 2013.
36. Van Den Driessche, P., Watmough, J., "Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission", Mathematical Biosciences, 180, (1), pp. 29-48, 2002. [DOI:10.1016/S0025-5564(02)00108-6]
37. Hernandez-Vargas, A. E. and Meyer-Hermann, M., "Innate Immune System Dynamics to Influenza Virus", IFAC Proceedings Volumes, 45, (18), pp. 260-265. 2012. [DOI:10.3182/20120829-3-HU-2029.00029]
38. Slotine, J. J. E., Li, W., "Applied Nonlinear Control", Prentice Hall Englewood Cliffs, NJ, 199, 1991.