Volume 16, Issue 2 (Journal of Control, V.16, N.2 Summer 2022)                   JoC 2022, 16(2): 55-67 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javaheripour M, Vali A, Behnam Gol V, Allahverdi Zadeh F. Line of Sight (LOS) rate estimation in strap down seekers using discrete-time extended state observer.. JoC 2022; 16 (2) :55-67
URL: http://joc.kntu.ac.ir/article-1-875-en.html
1- Malek Ashtar University of Technology
Abstract:   (3570 Views)
The line of sight (LOS) rate is a parameter that is needed to calculate the acceleration applied to missiles by the proportional guidance laws in order to hit the target. This rate is usually measured using gimbaled seekers. However, if the type of missile seeker be strap down, the LOS rate must be calculated from deriving the missile's seeker output angles or estimation methodes. The derivation method is not desirable due to the noisy output of the seekers and low pass filters are needed to achieve an acceptable output, which will cause a lag in the guidance loop. In this paper, a discrete time extended state observers will be designed to estimate the LOS rate. The advantage of the time discontinuity of the observer is that issues related to the implementation of the observer on the processors, such as the choice of sampling time, considered from the design level and examined in computer simulation.
Full-Text [PDF 1331 kb]   (525 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2021/06/5 | Accepted: 2022/01/7 | ePublished ahead of print: 2022/01/30

1. ‏[1] Moosapour, S. H. "Tree-Dimensional Air toSurface Missile Guidance based on nonlinear model", M.S, Thesis, pp: 34-37, 2012.
2. ‏[2] Özkan, Bülent, and Altuğ Uçar. "Comparison of the strapdown and gimbaled seekers utilized in aerial applications." Infrared Technology and Applications XXXVIII. Vol. 8353. International Society for Optics and Photonics, 2012.‏ [DOI:10.1117/12.919017]
3. ‏[3] Liu, YongShan, Li Song, and JingLong Li. "Extraction and Filter Algorithm of Guidance Information for Full-strapdown Seeker on Rotation Missile." MATEC Web of Conferences. Vol. 214. EDP Sciences, 2018.‏ [DOI:10.1051/matecconf/201821403008]
4. ‏[4] Hong, Ju-Hyeon, et al. "Study on Parasite Effect with Strapdown Seeker in Consideration of Time Delay." Journal of Guidance, Control, and Dynamics, pp: 1383-1392, 2019. [DOI:10.2514/1.G004040]
5. ‏[5] Xu, Zheng, et al. "A Novel LOS Rate Estimation Method Based on Images for Strap-down Inertial Guidance." Journal of Physics: Conference Series. Vol. 1570. No. 1. IOP Publishing, 2020. [DOI:10.1088/1742-6596/1570/1/012060]
6. ]6[خاکی صدیق. علی، "سیستم¬های کنترل خطی"، انتشارات دانشگاه پیام نور، مهرماه 1381.
7. ‏[7] Shao, Xingling, et al. "High-order ESO based output feedback dynamic surface control for quadrotors under position constraints and uncertainties." Aerospace Science and Technology, pp: 288-298, 2019. [DOI:10.1016/j.ast.2019.04.003]
8. ‏[8] Guo, Jishu, Junmei Guo, and Zhongjun Xiao. "Robust tracking control for two classes of variable stiffness actuators based on linear extended state observer with estimation error compensation." International Journal of Advanced Robotic Systems, 2020.‏ [DOI:10.1177/1729881420911774]
9. ‏[9] Li, Zongxuan, Ronghui Li, and Renxiang Bu. "Path following of under-actuated ships based on model predictive control with state observer." Journal of Marine Science and Technology, pp: 408-418, 2021. [DOI:10.1007/s00773-020-00746-1]
10. ‏[10] Shi, Wanfa, Kun Liu, and Wenpeng Zhao. "Active Vibration Isolation of a Maglev Inertially Stabilized Platform Based on an Improved Linear Extended State Observer." IEEE Access, pp: 743-751, 2020.‏ [DOI:10.1109/ACCESS.2020.3046886]
11. ‏[11] Ma, Youjie, et al. "Analysis and control of wind power grid integration based on a permanent magnet synchronous generator using a fuzzy logic system with linear extended state observer." Energies, 2019.‏ [DOI:10.3390/en12152862]
12. ‏[12] Arcak, Murat, and Dragan Nešić. "A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation." Automatica, Vol. 40, No. 11, pp. 1931-1938, 2004. [DOI:10.1016/j.automatica.2004.06.004]
13. ]13[ازگلی. سجاد، عاروان. محمدرضا، "مدل¬سازی و شبیه¬سازی سامانه-های متحرک"، انتشارات یامهدی (عج)، تابستان 1389.
14. ]14 [بهنام گل. وحید، "بهبود عملکرد سیستم هدایت با ارائه الگوریتم-های نوینی در کنترل مد لغزشی"، رساله دکتری، دانشگاه صنعتی مالک اشتر، اسفند 1394.
15. ‏[15] Bertil, E. "Tracking Filters and Models for Seeker Applications." IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 3, pp: 965-977, 2001.‏ [DOI:10.1109/7.953250]
16. ‏[16] Huang, Yuan, et al. "Performance assessment of discrete-time extended state observers: Theoretical and experimental results." IEEE Transactions on Circuits and Systems I: Regular Papers, pp: 2256-2268, 2017.‏ [DOI:10.1109/TCSI.2017.2780161]
17. [17] H. J. MARQUEZ, "Nonlinear Control Systems", John Wiley & Sons, Inc. 2003.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb