دوره 17، شماره 1 - ( مجله کنترل، جلد 17، شماره 1، بهار 1402 )                   جلد 17 شماره 1,1402 صفحات 49-35 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghani H, Akbarzadeh Kalat A. Observer-based controller design for a nonlinear fractional order system. JoC 2023; 17 (1) :35-49
URL: http://joc.kntu.ac.ir/article-1-947-fa.html
دهقانی فیروز آبادی حمید، اکبرزاده کلات علی. طراحی یک کنترل‌کننده مبتنی بر رؤیتگر برای یک سیستم مرتبه کسری غیرخطی. مجله کنترل. 1402; 17 (1) :35-49

URL: http://joc.kntu.ac.ir/article-1-947-fa.html


1- دانشکده مهندسی برق و رباتیک، گروه کنترل، دانشگاه صنعتی شاهرود
چکیده:   (456 مشاهده)
در این مقاله یک کنترل‌کننده مبتنی بر رؤیتگر برای یک کلاس از سیستم‌های غیر خطی مرتبه کسری ارائه می‌گردد. ابتدا با در نظر گرفتن یک سیستم مرتبه کسری پایدار که به عنوان مدل مرجع شناخته می‌شود، کنترل‌کننده به گونه‌ای طراحی می‌گردد که سیستم حلقه‌بسته، حالت‌های سیستم مرجع را تعقیب کند. با توجه به غیرقابل اندازه‌گیری بودن تعدادی از حالت‌های سیستم مرتبه کسری، طراحی کنترل‌کننده، مبتنی بر رؤیتگر انجام می‌گیرد. رؤیتگر پیشنهادی در این تحقیق با استفاده از رویکرد تئوری مقدار میانگین مشتقی، دینامیک خطای غیرخطی رؤیتگر را به دینامیک خطی و متغیر با پارامتر تبدیل می‌کند به طوری که تحلیل پایداری آن با استفاده از تابع لیاپانوف و نامساوی ماتریسی خطی به راحتی انجام می‌گیرد. در ادامه تحلیل پایداری کنترل‌کننده مبتنی بر رؤیتگر نیز با استفاده از قضیه لیاپانوف انجام می‌گیرد. در خاتمه برای نشان دادن کارآیی و مؤثر بودن کنترل‌کننده پیشنهادی، نتایج شبیه‌سازی دو سیستم مرتبه کسری غیرخطی با در نظر گرفتن کنترل کننده طراحی شده نشان داده می‌شود.
متن کامل [PDF 3055 kb]   (49 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/5/2 | پذیرش: 1402/2/1 | انتشار الکترونیک پیش از انتشار نهایی: 1402/3/21 | انتشار: 1402/4/1

فهرست منابع
1. [ ]I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
2. [ ]R. Hilfer, Application of Fractional Calculus in Physics, World Science Publishing, Singapore, 2000. [DOI:10.1142/3779]
3. [ ]A. Boulkroune, A. Bouzerbia and T. Bouden, 2016, "Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control", Neural Computing and Applications, vol. 27, no. 5, pp. 1349-1360. [DOI:10.1007/s00521-015-1938-4]
4. [ ]N. Laskin, 2000, "Fractional market dynamics", Physica A: Statistical Mechanics and its Applications, vol. 287, no. 3-4, pp. 482-492. [DOI:10.1016/S0378-4371(00)00387-3]
5. [ ]X. Yin, D. Yue and S. Hu, 2013, "Consensus of fractional Order heterogeneous multi-agent systems", IET Control Theory and Applications, vol.7, no. 2, pp. 314-322. [DOI:10.1049/iet-cta.2012.0511]
6. [ ]J.G. Lu, G. Chen, 2009, "Robust stability and stabilization of fractional-order interval systems: An LMI approach", IEEE Transaction on Automatic Control, vol. 54, no. 6, pp. 1294-1299. [DOI:10.1109/TAC.2009.2013056]
7. [ ]Y. Chen, Y. Wei, X. Zhou, Y. Wang, 2017, "Stability for nonlinear fractional order systems: an indirect approach", Nonlinear Dynamics. vol. 89, no. 2, pp. 1011-1018. [DOI:10.1007/s11071-017-3497-y]
8. [ ]Z. Song, K. Sun, S. Ling, 2017, "Stabilization and synchronization for a mechanical system via adaptive sliding mode control". ISA Transaction, vol. 68, pp. 353-366. [DOI:10.1016/j.isatra.2017.02.013]
9. [ ]N. Goléa, A. Goléa, K. Barra, T. Bouktir, 2008, "Observer-based adaptive control of robot manipulators: Fuzzy systems approach", Applied Soft Computing, vol. 8, no. 1, pp. 778-787. [DOI:10.1016/j.asoc.2007.05.011]
10. [ ]M.P.Aghababa, 2012, "Robust stabilization and synchronization of a class of fractional- order chaotic systems via a novel fractional sliding mode controller", Communications in Nonlinear Science and Numerical Simulation, vol.17, pp. 2670-2681. [DOI:10.1016/j.cnsns.2011.10.028]
11. [ ] Y. Li, Y. Chen, I. Podlubny, 2010, "Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability", Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1810-1821. [DOI:10.1016/j.camwa.2009.08.019]
12. [ ] J. Yu, H. Hu, S. Zhou, X. Lin, 2013, "Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems", Automatica, vol. 49, no. 6, pp. 1798-1803. [DOI:10.1016/j.automatica.2013.02.041]
13. [ ] C. Farges, M. Moze, J. Sabatier, 2010, "Pseudo-state feedback stabilization of commensurate fractional order systems", Automatica, vol. 46, pp. 1730-1734. [DOI:10.1016/j.automatica.2010.06.038]
14. [ ]J.C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, 2011, "A Lyapunov approach to the stability of fractional differentiel equations", Signl Processing, vol. 91 no. 3, pp. 437-445. [DOI:10.1016/j.sigpro.2010.04.024]
15. [ D.Y. Chen, R.F. Zhang, X.Z. Liu, X.Y. Ma, 2014, "Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks", Communications in Nonlinear Science and Numerical Simulation, vol. 19, pp. 4105-4121. [DOI:10.1016/j.cnsns.2014.05.005]
16. [ ] M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, 2015, "Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems", Communications in Nonlinear Science and Numerical Simulation, vol. 22, no. 1-3, pp. 650-659. [DOI:10.1016/j.cnsns.2014.10.008]
17. [ ] S. Ibrir, M. Bettayeb, 2015, "New sufficient conditions for observer-based control of fractional-order uncertain systems", Automatica, vol. 59, pp. 216-223. [DOI:10.1016/j.automatica.2015.06.002]
18. [ ] A. Mohammadzadeh, S. Ghaemi, 2018, "Robust synchronization of uncertain fractional-order chaotic systems with time-varying delay", Nonlinear Dynamics, vol. 93, pp. 1809-1821. [DOI:10.1007/s11071-018-4290-2]
19. [ ] T. Liu, F.Wang,W. Lu, X.Wang, 2019, "Global stabilization for a class of nonlinear fractional-order systems, International Journal of Modeling, "Simulation and Scientific Computing, vol. 10, pp. 1-10. [DOI:10.1142/S1793962319410095]
20. [ ] Y. H. Lan, Y. Zhou, 2011, "Lmi-based robust control of fractional-order uncertain linear systems", Computers and Mathematics with Applications, vol. 62, no.3, pp. 1460-1471. [DOI:10.1016/j.camwa.2011.03.028]
21. [ ] Y. H. Lan, H. X. Huang, Y.Zhou, 2012, "Observer-based robust control of α (1<α<2) fractional-order uncertain systems: a linear matrix inequality approach", IET Control Theory Application. vol. 6, pp. 229-234. [DOI:10.1049/iet-cta.2010.0484]
22. [ ] E. A. Boroujeni, H. R. Momeni, 2012, "Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems", Signal Processing.vol. 92, pp. 2365-2370,. [DOI:10.1016/j.sigpro.2012.02.009]
23. [ ] Z.S. Aghayan, A. Alfi, T. Machado, 2021, "Observer-based control approach for fractional-order delay systems of neutral type with saturating actuator". Mathematical Methods in Applied Science, vol. 44, no. 11, pp. 8554-8564. [DOI:10.1002/mma.7282]
24. [ ] H. F. Ghavidel, A. A Kalat, 2017, "Observer-based robust composite adaptive fuzzy control by uncertainty estimation for a class of nonlinear systems", Neurocomputing, vol. 230, pp.100-109. [DOI:10.1016/j.neucom.2016.12.001]
25. [ ] H. F. Ghavidel, A. A Kalat, 2018, "Observer-based hybrid adaptive fuzzy control for affine and nonaffine uncertain nonlinear systems", Neural Computing and Applications, vol. 30, pp. 1187-1202. [DOI:10.1007/s00521-016-2732-7]
26. [ ] D. Valério, J.J. Trujillo, M. Rivero, J.T. Machado, D. Baleanu, 2013, "Fractional calculus: a survey of useful formulas". The European Physical Journal Special Topics, vol. 222, no. 8, pp. 1827-46. [DOI:10.1140/epjst/e2013-01967-y]
27. [ ] D. Chen, R. Zhang, X. Liu, X. Ma, 2014, "Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks", Communications in Nonlinear Science and Numerical Simulation, vol. 19, pp. 4105-4121. [DOI:10.1016/j.cnsns.2014.05.005]
28. [ ] N. Aguila-Camacho, M.A. Duarte-Mermoud, J. Gallegos, 2014, "Lyapunov functions for fractional order systems", Communications in Nonlinear Science and Numerical Simulation, vol. 19, pp. 2951-7. [DOI:10.1016/j.cnsns.2014.01.022]
29. [ ] M-A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos, R. Castro-Linares, 2014, "Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems", Communications in Nonlinear Science and Numerical Simulation vol. 22, no. 1-3, pp. 650-659. [DOI:10.1016/j.cnsns.2014.10.008]
30. [ ] V. Sharma, V. Agrawal, B. Sharma, R. Nath, 2016, "Unknown input nonlinear observer design for continuous and discrete time systems with input recovery scheme". Nonlinear Dynamics vol. 85, no. 1, pp. 645-658. [DOI:10.1007/s11071-016-2713-5]
31. [ ]V. Sharma, M. Shukla, B.B. Sharma, 2018, "Unknown input observer design for a class of fractional order nonlinear systems", Chaos, Soliton and Fractal, vol. 115, pp. 96-107. [DOI:10.1016/j.chaos.2018.08.017]
32. [ ] A. Zemouche, M. Boutayeb, 2009, "A unified H∞ adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities", System and Control Letter, vol. 58, pp. 282- 288. [DOI:10.1016/j.sysconle.2008.11.007]
33. [ ] A. Zemouche, M. Boutayeb, G.I. Bara, 2005, "Observer design for nonlinear systems. An approach based on the differential mean value theorem". Proc CDC-ECC'05, 44th IEEE Conference on IEEE, pp.6353-6358.
34. [ ] S. Boyd, L. Vandenberghe, 2001, "Convex optimization with engineering applications", in: Lecture Notes, Stanford University, Stanford.
35. [ ] M. M. Polycarpous, P. A. Ioannouq, 1996, " A Robust Adaptive Nonlinear Control Design", Automarica, vol. 32, pp. 423-427. [DOI:10.1016/0005-1098(95)00147-6]
36. [ ] I. Petras, D. Bednarova, 2011 , "Control of fractional-order nonlinear systems: a review", Acta Mechanica et Automatica, vol.5, no.2, pp. 96-100.
37. [ ] S. Dadras, H.R. Momeni, 2010, "Control of a fractional-order economical systems via sliding mode" , Physica A: Statistical Mechanics and its Applications, vol. 389, pp. 2434-2442. [DOI:10.1016/j.physa.2010.02.025]
38. [ ] M. Bettayeb, S. Djennoune, 2016, "Design of sliding mode controllers for nonlinear fractional-order systems via diffusive representation", Nonlinear Dynamics. vol. 84, pp. 593-605. [DOI:10.1007/s11071-015-2509-z]
39. [ ] A. Zemouche and M. Boutayeb, 2013, "On LMI conditions to design observers for Lipschitz nonlinear systems," Automatica, vol. 49, pp. 585-591. [DOI:10.1016/j.automatica.2012.11.029]
40. [ ] E. A. Boroujeni, H. R. Momeni, 2012, "Observer Based Control of a Class of NonlinearFractional Order Systems using LMI", World Academy of Science, Engineering and Technology, vol. 6 (1), pp. 81-84.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2023 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb