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Neural Least Square Policy Iteration learning with Critic-only
architecture

Omid Mehrabi, Ahmad Fakharian, Mehdi Siahi, Amin Ramezani

Abstract: Intelligent control of real control problems based on reinforcement learning often
requires decision-making in a large or continuous state-action space. Since the number of adjustable
parameters in discrete reinforcement learning has a direct relationship with cardinality of the state-
action space of the problem, so in such problems, we are faced with the curse of dimensiality, low
learning speed and low efficiency. The use of continuous reinforcement learning methods to
overcome these problems have attracted many research interests. In this paper a novel Neural
Reinforcement Learning (NRL) scheme is proposed. The presented method is model free and learning
rate independent, and is obtained by combining Least Squares Policy Iteration (LSPI) with Radial
Basis Functions (RBF) as a function approximator, and we call it "Neural Least Squares Policy
Iteration" (NLSPI). In this method, by using the basis functions defined in the RBF neural network
structure, we have provided a solution to solve the challenge of defining the state-action basis
functions in LSPI. In order to validate the presented method, the performance of the proposed
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algorithm in solving two control problems has been compared with other methods. The overall results
show the superiority of our method in learning the pseudo-optimal policy.
Keywords: Neural reinforcement learning, Critic-only architecture, Least Square Policy Iteration,

RBF network.
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