Volume 17, Issue 2 (Journal of Control, V.17, N.2 Summer 2023)                   JoC 2023, 17(2): 179-194 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Adelipour S, Haeri M. A Review of Privacy Preserving Encrypted Control for Cyber-Physical Systems. JoC 2023; 17 (2) :179-194
URL: http://joc.kntu.ac.ir/article-1-997-en.html
1- Sharif University of Technology
Abstract:   (1625 Views)
Utilizing cloud computing and distributed computing has led to various advantages like enhanced performance, enabling outsourcing of complex computations, and higher scalability in a vast range of network control systems such as smart energy networks, smart buildings, and intelligent transportation. However, confidentiality breaches and manipulation of sensitive and private information, as well as lack of public trust in cloud-based decentralized and distributed approaches where agents are reluctant to share their information due to privacy concerns are among the emerging challenges in control of cyber-physical systems. This paper reviews the privacy-preserving encrypted control methods that address some of these challenges. In encrypted control methods, all the required computations are performed directly on the encrypted data, and thus, no intermediate decryption of private data is needed. In this way, the access of adversaries to the crucial information of the control system will be very restricted. Since implementing a complex cyberattack usually requires an in-depth knowledge of the system’s data, protecting the privacy of the system’s signals in the entire control loop considerably reduces the possibility of more complex cyberattacks. Therefore, in this paper, homomorphic encryption and secure multi-party computation methods are introduced as the basis for preserving the privacy of data and designing secure control approaches. Then, various control and optimization methods are reviewed. Shortcomings and challenges of existing results are discussed and the roadmap to further research in this emerging topic in control engineering is drawn.
Full-Text [PDF 490 kb]   (403 Downloads)    
Type of Article: Research paper | Subject: New approaches in control engineering
Received: 2023/08/9 | Accepted: 2023/09/8 | ePublished ahead of print: 2023/09/11 | Published: 2023/09/21

References
1. [1] Xia, Y., Zhang, Y., Dai, L., Zhan, Y., & Guo, Z. (2022). A brief survey on recent advances in cloud control systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(7), 3108-3114. [DOI:10.1109/TCSII.2022.3178975]
2. [2] Zhang, D., Wang, Q.G., Feng, G., Shi, Y., & Vasilakos, A.V. (2021). A survey on attack detection, estimation and control of industrial cyber-physical systems. ISA transactions, 116, 1-16. [DOI:10.1016/j.isatra.2021.01.036]
3. [3] Dibaji, S.M., Pirani, M., Flamholz, D.B., Annaswamy, A.M., Johansson, K.H., & Chakrabortty, A. (2019). A systems and control perspective of CPS security. Annual Reviews in Control, 47, 394-411. [DOI:10.1016/j.arcontrol.2019.04.011]
4. [4] Sandberg, H., Gupta, V., & Johansson, K.H. (2022). Secure networked control systems. Annual Review of Control, Robotics, and Autonomous Systems, 5, 445-464. [DOI:10.1146/annurev-control-072921-075953]
5. [5] Teixeira, A., Sou, K.C., Sandberg, H., & Johansson, K.H. (2015). Secure control systems: A quantitative risk management approach. IEEE Control Systems Magazine, 35(1), 24-45. [DOI:10.1109/MCS.2014.2364709]
6. [6] Nekouei, E., Tanaka, T., Skoglund, M., & Johansson, K. H. (2019). Information-theoretic approaches to privacy in estimation and control. Annual Reviews in Control, 47, 412-422. [DOI:10.1016/j.arcontrol.2019.04.006]
7. [7] Lu, Y., & Zhu, M. (2019). A control-theoretic perspective on cyber-physical privacy: Where data privacy meets dynamic systems. Annual Reviews in Control, 47, 423-440. [DOI:10.1016/j.arcontrol.2019.04.010]
8. [8] Sánchez, H. S., Rotondo, D., Escobet, T., Puig, V., & Quevedo, J. (2019). Bibliographical review on cyber-attacks from a control-oriented perspective. Annual Reviews in Control, 48, 103-128. [DOI:10.1016/j.arcontrol.2019.08.002]
9. [9] Li, G., Ren, L., Fu, Y., Yang, Z., Adetola, V., Wen, J., Zhu, Q., Wu, T., Candan, K.S. & O'Neill, Z. (2023). A critical review of cyber-physical security for building automation systems. Annual Reviews in Control, 55, 237-254. [DOI:10.1016/j.arcontrol.2023.02.004]
10. [10] Arauz, T., Chanfreut, P., & Maestre, J. M. (2022). Cyber-security in networked and distributed model predictive control. Annual Reviews in Control, 53, 338-355. [DOI:10.1016/j.arcontrol.2021.10.005]
11. [11] Blanco-Justicia, A., Domingo-Ferrer, J., Martínez, S., Sánchez, D., Flanagan, A., & Tan, K. E. (2021). Achieving security and privacy in federated learning systems: Survey, research challenges and future directions. Engineering Applications of Artificial Intelligence, 106, 104468. [DOI:10.1016/j.engappai.2021.104468]
12. [12] Afshar, A., Termehchy, A., Golshan, A., Aghaeeyan, A., & Shahriyari, H. (2014). Survey on cyber security of industrial control systems. Journal of Control, 8(1), 31-45.
13. [13] Cheng, Z., Ye, F., Cao, X., & Chow, M.Y. (2021). A homomorphic encryption-based private collaborative distributed energy management system. IEEE Transactions on Smart Grid, 12(6), 5233-5243. [DOI:10.1109/TSG.2021.3091624]
14. [14] Zhang, C. & Wang, Y. (2018). Enabling privacy-preservation in decentralized optimization. IEEE Transactions on Control of Network Systems, 6(2), 679-689. [DOI:10.1109/TCNS.2018.2873152]
15. [15] Huo, X. & Liu, M. (2021). Encrypted decentralized multi-agent optimization for privacy preservation in cyber-physical systems. IEEE Transactions on Industrial Informatics. In Press.
16. [16] Sharma, S. & Kaushik, B. (2019). A survey on internet of vehicles: Applications, security issues & solutions. Vehicular Communications, 20, 100182. [DOI:10.1016/j.vehcom.2019.100182]
17. [17] Sultangazin, A. & Tabuada, P. (2020). Symmetries and isomorphisms for privacy in control over the cloud. IEEE Transactions on Automatic Control, 66(2), 538-549. [DOI:10.1109/TAC.2020.2982611]
18. [18] Darup, M.S., Alexandru, A.B., Quevedo, D.E., & Pappas, G.J. (2021). Encrypted Control for Networked Systems: An Illustrative Introduction and Current Challenges. IEEE Control Systems Magazine, 41(3), 58-78. [DOI:10.1109/MCS.2021.3062956]
19. [19] Suryavanshi, A., Alnajdi, A., Alhajeri, M., Abdullah, F., & Christofides, P. D. (2023). Encrypted model predictive control design for security to cyberattacks. AIChE Journal, 69(8), e18104. [DOI:10.1002/aic.18104]
20. [20] Sun, Q., & Shi, Y. (2021). Model predictive control as a secure service for cyber-physical systems: A cloud-edge framework. IEEE Internet of Things Journal, 9(22), 22194-22203. [DOI:10.1109/JIOT.2021.3091981]
21. [21] Kim, J., Kim, D., Song, Y., Shim, H., Sandberg, H., & Johansson, K.H. (2022). Comparison of encrypted control approaches and tutorial on dynamic systems using Learning With Errors-based homomorphic encryption. Annual Reviews in Control, 54, 200-218. [DOI:10.1016/j.arcontrol.2022.10.002]
22. [22] Umsonst, D. & Sandberg, H. (2021). On the confidentiality of controller states under sensor attacks. Automatica, 123, 109329. [DOI:10.1016/j.automatica.2020.109329]
23. [23] An, L., & Yang, G.H. (2022). Enhancement of opacity for distributed state estimation in cyber-physical systems. Automatica, 136, 110087. [DOI:10.1016/j.automatica.2021.110087]
24. [24] Wang, L., Zhang, M., Zhu, J., Xing, L., & Wu, Q. (2022). A privacy-preserving decentralized randomized block-coordinate subgradient algorithm over time-varying networks. Expert Systems with Applications, 208, 118099. [DOI:10.1016/j.eswa.2022.118099]
25. [25] Murguia, C., Shames, I., Farokhi, F., Nešić, D., & Poor, H.V. (2021). On privacy of dynamical systems: An optimal probabilistic mapping approach. IEEE Transactions on Information Forensics and Security, 16, 2608-2620. [DOI:10.1109/TIFS.2021.3055022]
26. [26] Hassan, M.U., Rehmani, M.H., & Chen, J. (2019). Differential privacy techniques for cyber physical systems: a survey. IEEE Communications Surveys & Tutorials, 22(1), 746-789. [DOI:10.1109/COMST.2019.2944748]
27. [27] Wang, Y., & Nedić, A. (2023). Tailoring gradient methods for differentially-private distributed optimization. IEEE Transactions on Automatic Control, In press. [DOI:10.1109/TAC.2023.3272968]
28. [28] Chen, B., Leahy, K., Jones, A., & Hale, M. (2023). Differential privacy for symbolic systems with application to Markov Chains. Automatica, 152, 110908. [DOI:10.1016/j.automatica.2023.110908]
29. [29] Huo, X., & Liu, M. (2021). Privacy-preserving distributed multi-agent cooperative optimization-paradigm design and privacy analysis. IEEE Control Systems Letters, 6, 824-829. [DOI:10.1109/LCSYS.2021.3086441]
30. [30] Farokhi, F., & Esfahani, P. M. (2018, December). Security versus privacy. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 7101-7106). IEEE. [DOI:10.1109/CDC.2018.8619460]
31. [31] Chong, M. S., Sandberg, H., & Teixeira, A. M. (2019, June). A tutorial introduction to security and privacy for cyber-physical systems. In 2019 18th European Control Conference (ECC) (pp. 968-978). IEEE. [DOI:10.23919/ECC.2019.8795652]
32. [32] Liu, S., Trivedi, A., Yin, X., & Zamani, M. (2022). Secure-by-construction synthesis of cyber-physical systems. Annual Reviews in Control, 53, 30-50. [DOI:10.1016/j.arcontrol.2022.03.004]
33. [33] Ding, D., Han, Q.L., Xiang, Y., Ge, X., & Zhang, X. M. (2018). A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing, 275, 1674-1683. [DOI:10.1016/j.neucom.2017.10.009]
34. [34] Weerakkody, S., Ozel, O., Mo, Y., & Sinopoli, B. (2019). Resilient control in cyber-physical systems: Countering uncertainty, constraints, and adversarial behavior. Foundations and Trends® in Systems and Control, 7(1-2), 1-252. [DOI:10.1561/9781680835878]
35. [35] Kordestani, M., & Saif, M. (2021). Observer-based attack detection and mitigation for cyberphysical systems: A review. IEEE Systems, Man, and Cybernetics Magazine, 7(2), 35-60. [DOI:10.1109/MSMC.2020.3049092]
36. [36] Duo, W., Zhou, M., & Abusorrah, A. (2022). A survey of cyber-attacks on cyber physical systems: Recent advances and challenges. IEEE/CAA Journal of Automatica Sinica, 9(5), 784-800. [DOI:10.1109/JAS.2022.105548]
37. [37] Burbano, L., Garg, K., Leudo, S. J., Cardenas, A. A., & Sanfelice, R. G. (2023). Online attack recovery in cyberphysical systems. IEEE Security & Privacy, 21(4), 20-28. [DOI:10.1109/MSEC.2023.3268573]
38. [38] Tran, J., Farokhi, F., Cantoni, M., & Shames, I. (2020). Implementing homomorphic encryption based secure feedback control. Control Engineering Practice, 97, 104350. [DOI:10.1016/j.conengprac.2020.104350]
39. [39] ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE transactions on information theory, 31(4), 469-472. [DOI:10.1109/TIT.1985.1057074]
40. [40] Paillier, P. (1999, May). Public-key cryptosystems based on composite degree residuosity classes. In International conference on the theory and applications of cryptographic techniques, (pp. 223-238). Springer, Berlin, Heidelberg. [DOI:10.1007/3-540-48910-X_16]
41. [41] Gentry, C. (2009, May). Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual ACM symposium on Theory of computing, (pp. 169-178). [DOI:10.1145/1536414.1536440]
42. [42] Teranishi, K., Sadamoto, T., & Kogiso, K. (2023). Input-output history feedback controller for encrypted control with leveled fully homomorphic encryption. IEEE Transactions on Control of Network Systems, In press. [DOI:10.1109/TCNS.2023.3280460]
43. [43] Cheon, J.H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic encryption for arithmetic of approximate numbers. In 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, (pp. 409-437). Springer. [DOI:10.1007/978-3-319-70694-8_15]
44. [44] Ducas, L., & Micciancio, D. (2015, April). FHEW: bootstrapping homomorphic encryption in less than a second. In Annual international conference on the theory and applications of cryptographic techniques (pp. 617-640). Berlin, Heidelberg: Springer. [DOI:10.1007/978-3-662-46800-5_24]
45. [45] Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612-613. [DOI:10.1145/359168.359176]
46. [46] Xia, Z., Gu, Q., Zhou, W., Xiong, L., Weng, J., & Xiong, N. (2021). STR: Secure computation on additive shares using the share-transform-reveal strategy. IEEE Transactions on Computers, In press.
47. [47] Tjell, K. & Wisniewski, R. (2021). Privacy in Distributed Computations based on Real Number Secret Sharing. arXiv preprint arXiv:2107.00911.
48. [48] Zhao, C., Zhao, S., Zhao, M., Chen, Z., Gao, C. Z., Li, H., & Tan, Y.A. (2019). Secure multi-party computation: theory, practice and applications. Information Sciences, 476, 357-372. [DOI:10.1016/j.ins.2018.10.024]
49. [49] Darup, M.S. & Jager, T. (2019, December). Encrypted cloud-based control using secret sharing with one-time pads. In 2019 IEEE 58th Conference on Decision and Control (CDC), (pp. 7215-7221). [DOI:10.1109/CDC40024.2019.9029342]
50. [50] Farokhi, F., Shames, I., & Batterham, N. (2017). Secure and private control using semi-homomorphic encryption. Control Engineering Practice, 67, 13-20. [DOI:10.1016/j.conengprac.2017.07.004]
51. [51] Kogiso, K. & Fujita, T. (2015, December). Cyber-security enhancement of networked control systems using homomorphic encryption. In 2015 54th IEEE Conference on Decision and Control (CDC), (pp. 6836-6843). [DOI:10.1109/CDC.2015.7403296]
52. [52] Teranishi, K., Shimada, N., & Kogiso, K. (2020). Stability-guaranteed dynamic ElGamal cryptosystem for encrypted control systems. IET Control Theory & Applications, 14(16), 2242-2252. [DOI:10.1049/iet-cta.2019.0729]
53. [53] Farokhi, F., Shames, I., & Batterham, N. (2016). Secure and private cloud-based control using semi-homomorphic encryption. IFAC-PapersOnLine, 49(22), 163-168. [DOI:10.1016/j.ifacol.2016.10.390]
54. [54] Darup, M.S. (2020). Encrypted polynomial control based on tailored two‐party computation. International Journal of Robust and Nonlinear Control, 30(11), 4168-4187. [DOI:10.1002/rnc.5003]
55. [55] Schlor, S., Hertneck, M., Wildhagen, S., & Allgöwer, F. (2021, December). Multi-party computation enables secure polynomial control based solely on secret-sharing. In 2021 60th IEEE conference on decision and control (CDC) (pp. 4882-4887). IEEE. [DOI:10.1109/CDC45484.2021.9683026]
56. [56] Murguia, C., Farokhi, F., & Shames, I. (2020). Secure and private implementation of dynamic controllers using semihomomorphic encryption. IEEE Transactions on Automatic Control, 65(9), 3950-3957. [DOI:10.1109/TAC.2020.2992445]
57. [57] Cheon, J. H., Han, K., Kim, H., Kim, J., & Shim, H. (2018, December). Need for controllers having integer coefficients in homomorphically encrypted dynamic system. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 5020-5025). IEEE. [DOI:10.1109/CDC.2018.8619600]
58. [58] Schlüter, N., & Darup, M. S. (2021). On the stability of linear dynamic controllers with integer coefficients. IEEE Transactions on Automatic Control, 67(10), 5610-5613. [DOI:10.1109/TAC.2021.3131126]
59. [59] Tavazoei, M.S. (2022). Non-minimality of the realizations and possessing state matrices with integer elements in linear discrete-time controllers. IEEE Transactions on Automatic Control, 68(6), 3698-3703. [DOI:10.1109/TAC.2022.3192811]
60. [60] Tavazoei, M.S. (2023). Pisot number-based discrete-time controllers with integer state matrices to ensure monotonic closed-loop step responses. IEEE Transactions on Automatic Control, In press. [DOI:10.1109/TAC.2023.3292177]
61. [61] Kim, J., Shim, H., & Han, K. (2022). Dynamic controller that operates over homomorphically encrypted data for infinite time horizon. IEEE Transactions on Automatic Control, 68(2), 660-672. [DOI:10.1109/TAC.2022.3142124]
62. [62] Darup, M.S., Redder, A., Shames, I., Farokhi, F., & Quevedo, D. (2017). Towards encrypted MPC for linear constrained systems. IEEE Control Systems Letters, 2(2), 195-200. [DOI:10.1109/LCSYS.2017.2779473]
63. [63] Schlüter, N. & Darup, M.S. (2020, December). Encrypted explicit MPC based on two-party computation and convex controller decomposition. In 2020 59th IEEE Conference on Decision and Control (CDC), 5469-5476. [DOI:10.1109/CDC42340.2020.9304078]
64. [64] Alexandru, A.B., Morari, M., & Pappas, G.J. (2018, December). Cloud-based MPC with encrypted data. In 2018 IEEE Conference on Decision and Control (CDC), 5014-5019. [DOI:10.1109/CDC.2018.8619835]
65. [65] Darup, M. S., Redder, A., & Quevedo, D. E. (2018). Encrypted cloud-based MPC for linear systems with input constraints. IFAC-PapersOnLine, 51(20), 535-542. [DOI:10.1016/j.ifacol.2018.11.035]
66. [66] Darup, M. S. (2020). Encrypted MPC based on ADMM real-time iterations. IFAC-PapersOnLine, 53(2), 3508-3514. [DOI:10.1016/j.ifacol.2020.12.1708]
67. [67] Alexandru, A.B., Gatsis, K., Shoukry, Y., Seshia, S.A., Tabuada, P., & Pappas, G.J. (2020). Cloud-based quadratic optimization with partially homomorphic encryption. IEEE Transactions on Automatic Control, 66(5), 2357-2364. [DOI:10.1109/TAC.2020.3005920]
68. [68] Zhang, Z., Che, X., Jiao, X., Yu, W., & Wan, L. (2022, May). Quadratic Optimization Using Additive Homomorphic Encryption in CPS. In 2022 13th Asian Control Conference (ASCC) (pp. 1995-2000). IEEE. [DOI:10.23919/ASCC56756.2022.9828190]
69. [69] Yang, Z., Zhang, Z., & Tian, Y. (2022, May). Experimental Validation of Encrypted Quadratic Optimization Implemented on Raspberry Pi. In 2022 13th Asian Control Conference (ASCC) (pp. 2018-2023). IEEE. [DOI:10.23919/ASCC56756.2022.9828260]
70. [70] Adelipour, S. & Haeri, M. (2023, May) Privacy-preserving model predictive control using secure multi-party computation, In 2023 31st International Conference on Electrical Engineering (ICEE) (pp. 915-919). IEEE. [DOI:10.1109/ICEE59167.2023.10334878]
71. [71] Tjell, K., & Wisniewski, R. (2019, December). Privacy preservation in distributed optimization via dual decomposition and ADMM. In 2019 IEEE 58th Conference on Decision and Control (CDC) (pp. 7203-7208). IEEE. [DOI:10.1109/CDC40024.2019.9028969]
72. [72] Tian, N., Guo, Q., Sun, H., & Zhou, X. (2022). Fully privacy-preserving distributed optimization in power systems based on secret sharing. Energy, 1(3), 351-362. [DOI:10.23919/IEN.2022.0045]
73. [73] Hossein ali zadeh, T., Turkmen, F., & Monshizadeh, N. (2022). Private computation of polynomials over networks. Systems & Control Letters, 166, 105291. [DOI:10.1016/j.sysconle.2022.105291]
74. [74] Tjell, K. & Wisniewski, R. (2020). Privacy preserving distributed summation in a connected graph. IFAC-PapersOnLine, 53(2), 3445-3450. [DOI:10.1016/j.ifacol.2020.12.1677]
75. [75] Darup, M.S., Redder, A., & Quevedo, D.E. (2018). Encrypted cooperative control based on structured feedback. IEEE control systems letters, 3(1), 37-42. [DOI:10.1109/LCSYS.2018.2851152]
76. [76] Lu, Y., & Zhu, M. (2018). Privacy preserving distributed optimization using homomorphic encryption. Automatica, 96, 314-325. [DOI:10.1016/j.automatica.2018.07.005]
77. [77] Wu, T., Zhao, C., & Zhang, Y.J.A. (2021). Privacy-preserving distributed optimal power flow with partially homomorphic encryption. IEEE Transactions on Smart Grid, 12(5), 4506-4521. [DOI:10.1109/TSG.2021.3084934]
78. [78] Huo, X. & Liu, M. (2022). Distributed privacy-preserving electric vehicle charging control based on secret sharing. Electric Power Systems Research, 211, 108357. [DOI:10.1016/j.epsr.2022.108357]
79. [85] Fang, W., Zamani, M., & Chen, Z. (2021). Secure and privacy preserving consensus for second-order systems based on Paillier encryption. Systems & Control Letters, 148, 104869. [DOI:10.1016/j.sysconle.2020.104869]
80. [86] Zhang, Z., Cheng, P., Wu, J., & Chen, J. (2020). Secure State Estimation Using Hybrid Homomorphic Encryption Scheme. IEEE Transactions on Control Systems Technology, 29(4), 1704-1720. [DOI:10.1109/TCST.2020.3019501]
81. [81] Sadeghikhorami, L., Zamani, M., Chen, Z., & Safavi, A.A. (2020). A secure control mechanism for network environments. Journal of the Franklin Institute, 357(17), 12264-12280. [DOI:10.1016/j.jfranklin.2020.09.010]
82. [82] Sadeghikhorami, L., Varadharajan, V., & Safavi, A.A. (2021). A novel secure observer-based controller and attack detection scheme for Networked Control Systems. Information Sciences, 575, 185-205. [DOI:10.1016/j.ins.2021.06.012]
83. [83] Sadeghikhorami, L. & Safavi, A.A. (2021). Secure distributed Kalman filter using partially homomorphic encryption. Journal of the Franklin Institute, 358(5), 2801-2825. [DOI:10.1016/j.jfranklin.2020.08.048]
84. [84] Alanwar, A., Gassmann, V., He, X., Said, H., Sandberg, H., Johansson, K.H., & Althoff, M. (2023). Privacy-preserving set-based estimation using partially homomorphic encryption. European Journal of Control, 71, 100786. [DOI:10.1016/j.ejcon.2023.100786]
85. [85] Feng, Z., Cao, G., Grigoriadis, K.M., & Pan, Q. (2023). Secure MPC-based Path-Following for UAS in Adverse Network Environment. IEEE Transactions on Industrial Informatics, In press. [DOI:10.1109/TII.2022.3232772]
86. [86] Solnør, P., Petrovic, S., & Fossen, T. I. (2023). Towards Oblivious Guidance Systems for Autonomous Vehicles. IEEE Transactions on Vehicular Technology, 72(6), 7067-7081. [DOI:10.1109/TVT.2023.3237892]
87. [87] Hassija, V., Chamola, V., Bajpai, B.C., & Zeadally, S. (2021). Security issues in implantable medical devices: Fact or fiction?. Sustainable Cities and Society, 66, 102552. [DOI:10.1016/j.scs.2020.102552]
88. [88] Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., & Baumbach, J. (2022). Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine, 61, e12-e27. [DOI:10.1055/s-0041-1740630]
89. [89] Weng, H., Hettiarachchi, C., Nolan, C., Suominen, H., & Lenskiy, A. (2023). Ensuring security of artificial pancreas device system using homomorphic encryption. Biomedical Signal Processing and Control, 79, 104044. [DOI:10.1016/j.bspc.2022.104044]
90. [90] Ying, Z., Cao, S., Liu, X., Ma, Z., Ma, J., & Deng, R. H. (2022). PrivacySignal: Privacy-preserving traffic signal control for intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 23(9), 16290-16303. [DOI:10.1109/TITS.2022.3149600]
91. [91] Kang, H.E.D., Kim, D., Kim, S., Kim, D.D., Cheon, J.H., & Anthony, B.W. (2021). Homomorphic encryption as a secure PHM outsourcing solution for small and medium manufacturing enterprise. Journal of Manufacturing Systems, 61, 856-865. [DOI:10.1016/j.jmsy.2021.06.001]
92. [92] Kogiso, K. (2018, December). Attack detection and prevention for encrypted control systems by application of switching-key management. In 2018 IEEE Conference on Decision and Control (CDC), (pp. 5032-5037). [DOI:10.1109/CDC.2018.8619221]
93. [93] Kawano, Y., Kashima, K., & Cao, M. (2021). Modular control under privacy protection: Fundamental trade-offs. Automatica, 127, 109518. [DOI:10.1016/j.automatica.2021.109518]
94. [94] Kogiso, K. (2018, June). Upper-bound analysis of performance degradation in encrypted control system. In 2018 Annual American Control Conference (ACC), (pp. 1250-1255). [DOI:10.23919/ACC.2018.8431234]
95. [95] Teranishi, K. & Kogiso, K. (2021). ElGamal-type encryption for optimal dynamic quantizer in encrypted control systems. SICE Journal of Control, Measurement, and System Integration, 14(1), 59-66. [DOI:10.1080/18824889.2021.1906016]
96. [96] Soleymani, M., Mahdavifar, H., & Avestimehr, A. S. (2022). Analog secret sharing with applications to private distributed learning. IEEE Transactions on Information Forensics and Security, 17, 1893-1904. [DOI:10.1109/TIFS.2022.3173417]
97. [97] Teranishi, K., Ueda, J., & Kogiso, K. (2020). Event-triggered approach to increasing sampling period of encrypted control systems. IFAC-PapersOnLine, 53(2), 3502-3507. [DOI:10.1016/j.ifacol.2020.12.1705]
98. [98] Damgård, I., Geisler, M., Krøigaard, M., & Nielsen, J. B. (2009, March). Asynchronous multiparty computation: Theory and implementation. In International workshop on public key cryptography (pp. 160-179). Berlin, Heidelberg: Springer. [DOI:10.1007/978-3-642-00468-1_10]
99. [99] Fauser, M., & Zhang, P. (2021, December). Resilient homomorphic encryption scheme for cyber-physical systems. In 2021 60th IEEE Conference on Decision and Control (CDC) (pp. 5634-5639). IEEE. [DOI:10.1109/CDC45484.2021.9683696]
100. [100] Fauser, M., & Zhang, P. (2022, June). Detection of cyber-attacks in encrypted control systems. In 2022 American Control Conference (ACC) (pp. 4992-4997). IEEE. [DOI:10.23919/ACC53348.2022.9867248]
101. [101] Miyamoto, M., Teranishi, K., Emura, K., & Kogiso, K. (2023). Cybersecurity-Enhanced Encrypted Control System Using Keyed-Homomorphic Public Key Encryption. IEEE Access, 11, 45749-45760. [DOI:10.1109/ACCESS.2023.3274691]
102. [102] Naseri, A.M., Lucia, W., & Youssef, A. (2023). Confidentiality attacks against encrypted control systems. Cyber-Physical Systems, 9(3), 224-243. [DOI:10.1080/23335777.2022.2051209]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb