Volume 17, Issue 2 (Journal of Control, V.17, N.2 Summer 2023)                   JoC 2023, 17(2): 129-147 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afzalian A A, Pirmohammad Talatape M. Networked Control Systems. JoC 2023; 17 (2) :129-147
URL: http://joc.kntu.ac.ir/article-1-1002-en.html
1- Shahid Beheshti University
Abstract:   (2034 Views)
Networked Control Systems (NCS) is a new field in control systems that has emerged by the use of communication networks in control systems. NCS refers to a control system in which sensors, actuators, and controllers are connected via a communication network and enable remote monitoring and control. The use of communication networks in control systems have many advantages, like reducing the cost of wiring, increasing flexibility, and improving scalability. However, the integration of communication networks in control systems will also carries new challenges such as data transmission delay, data packet loss, and network congestion, that require new methods for modeling and designing control systems. Research in the networked control systems is focused on the development of new modeling, estimating, identifying, and designing methods, which the effects of communication networks on the system’s behavior will be taken into account. In general, the field of NCS is an important research area because it allows the control systems to be applied in a wide range of applications and develop it in more efficient and flexible way. NCS can be found in various applications such as industrial automation, smart energy grids, transportation systems, and house automation. This article describes the emergence of control systems from the field of continuous time to networked control and compares it with traditional control systems. Furthermore, the most important challenges in NCS and related approaches will be discussed. Important applications of networked control systems by reviewing some featured case studies in Iran and other countries are also discussed. In the end, possible future directions in the development of networked control systems will be presented.
Full-Text [PDF 1655 kb]   (493 Downloads)    
Type of Article: Research paper | Subject: New approaches in control engineering
Received: 2023/08/1 | Accepted: 2023/09/16 | ePublished ahead of print: 2023/09/19 | Published: 2023/09/21

References
1. [1] A. Wicaksana, T. Rachman, Networked Control Systems, 2018.
2. [2] J. Baillieul, P.J. Antsaklis, Control and communication challenges in networked real-time systems, Proceedings of the IEEE. 95 (2007) 9-28. [DOI:10.1109/JPROC.2006.887290]
3. [3] M.K. Gautam, A. Pati, S.K. Mishra, B. Appasani, E. Kabalci, N. Bizon, P. Thounthong, A comprehensive review of the evolution of networked control system technology and its future potentials, Sustainability (Switzerland). 13 (2021) 1-39. https://doi.org/10.3390/su13052962 [DOI:10.3390/su13052962.]
4. [4] D. Zhang, P. Shi, Q.-G. Wang, L. Yu, Analysis and synthesis of networked control systems: A survey of recent advances and challenges, ISA Transactions. 66 (2017) 376-392. [DOI:10.1016/j.isatra.2016.09.026]
5. [5] M. Li, Y. Chen, Challenging research for networked control systems : A survey, (2019). https://doi.org/10.1177/0142331218799818 [DOI:10.1177/0142331218799818.]
6. [6] W. Zhou, Y. Wang, Y. Liang, Sliding mode control for networked control systems: A brief survey, ISA Transactions. 124 (2022) 249-259. https://doi.org/10.1016/j.isatra.2020.12.049 [DOI:10.1016/j.isatra.2020.12.049.]
7. [7] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE Communications Magazine. 40 (2002) 102-114. [DOI:10.1109/MCOM.2002.1024422]
8. [8] X. Ge, F. Yang, Q.L. Han, Distributed networked control systems: A brief overview, Information Sciences. 380 (2017) 117-131. https://doi.org/10.1016/j.ins.2015.07.047 [DOI:10.1016/j.ins.2015.07.047.]
9. [9] R.E. Kalman, Nonlinear analysis of sampled-data control systems, in: Proc. Symp. Nonlinear Circuit Analysis, 1956, 1956: pp. 273-312.
10. [10] D.F. Delchamps, Stabilizing a linear system with quantized state feedback, IEEE Transactions on Automatic Control. 35 (1990) 916-924. [DOI:10.1109/9.58500]
11. [11] K. You, L. Xie, Survey of Recent Progress in Networked Control Systems, Acta Automatica Sinica. 39 (n.d.) 101-117. https://doi.org/10.1016/S1874-1029(13)60013-0 [DOI:10.1016/S1874-1029(13)60013-0.]
12. [12] S.H. Strogatz, Exploring complex networks, Nature. 410 (2001) 268-276. [DOI:10.1038/35065725]
13. [13] C. Godsil, G.F. Royle, Algebraic graph theory, Springer Science & Business Media, 2001. [DOI:10.1007/978-1-4613-0163-9]
14. [14] N.C. Systems, Control over communication networks, in: Communications and Control Engineering, 2005: pp. 361-385. https://doi.org/10.1007/1-84628-063-X_16 [DOI:10.1007/1-84628-063-X_16.]
15. [15] M. Mesbahi, M. Egerstedt, Graph theoretic methods in multiagent networks, Princeton University Press, 2010. [DOI:10.1515/9781400835355]
16. [16] Y. Hatano, M. Mesbahi, Agreement Over Random Networks, 50 (2005) 1867-1872. [DOI:10.1109/TAC.2005.858670]
17. [17] S.P. Paul, S. Aggarwal, A Systematic Analysis of Research Trends on Network Control System in Wireless Sensor Network, in: 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE, 2022: pp. 1758-1763. [DOI:10.1109/ICACCS54159.2022.9785236]
18. [18] R.M. D'Souza, M. di Bernardo, Y.-Y. Liu, Controlling complex networks with complex nodes, Nature Reviews Physics. 5 (2023) 250-262. [DOI:10.1038/s42254-023-00566-3]
19. [19] K. Cai, M. Nagahara, A new perspective on cooperative control of multi-agent systems through different types of graph Laplacians, Advanced Robotics. 37 (2023) 2-11. [DOI:10.1080/01691864.2022.2093616]
20. [20] X.M. Zhang, Q.L. Han, X. Ge, D. Ding, L. Ding, D. Yue, C. Peng, Networked control systems: A survey of trends and techniques, IEEE/CAA Journal of Automatica Sinica. 7 (2020) 1-17. https://doi.org/10.1109/JAS.2019.1911651 [DOI:10.1109/JAS.2019.1911651.]
21. [21] J. Xu, J. Huang, An Overview of Recent Advances in the Event-Triggered Consensus of Multi-Agent Systems with Actuator Saturations, Mathematics. 10 (2022) 3879. [DOI:10.3390/math10203879]
22. [22] K. Zhang, Event-Triggered Stabilization of Linear Time-Delay Systems via Halanay-Type Inequality, IEEE Control Systems Letters. (2023). [DOI:10.1109/LCSYS.2023.3306494]
23. [23] M. Ghodrat, H.J. Marquez, A new Lyapunov-based event-triggered control of linear systems, IEEE Transactions on Automatic Control. 68 (2022) 2599-2606. [DOI:10.1109/TAC.2022.3190028]
24. [24] B. Sadeghi Sabzevari, M. Haddad Zarif, S.K. Hosseini Sani, Event-triggered Predictive Networked Control Systems with Network Imperfections and External Disturbance, مجله الکترونیک صنعتی ،کنترل و بهینه سازی. undefined (1401).
25. [25] H. Yang, S. Wang, P. Li, Digital H∞ filter design for a low frequency multiple‐input multiple‐output system with multirate measurements, International Journal of Robust and Nonlinear Control. 32 (2022) 5184-5199. [DOI:10.1002/rnc.6081]
26. [26] H. Yang, S. Wang, P. Li, H∞ negative imaginary static output feedback controller for low frequency networked control systems, International Journal of Control. (2023) 1-9. [DOI:10.1080/00207179.2023.2245928]
27. [27] A. Baños, J. Salt, V. Casanova, A QFT approach to robust dual‐rate control systems, International Journal of Robust and Nonlinear Control. 32 (2022) 1026-1054. [DOI:10.1002/rnc.5861]
28. [28] J. Sun, M. Cantoni, On Riccati contraction in time-varying linear-quadratic control, ArXiv Preprint ArXiv:2305.06003. (2023).
29. [29] N. Sivashankar, P.P. Khargonekar, Characterization of the L_2-induced norm for linear systems with jumps with applications to sampled-data systems, SIAM Journal on Control and Optimization. 32 (1994) 1128-1150. [DOI:10.1137/S0363012991223121]
30. [30] X.-M. Zhang, Q.-L. Han, X. Ge, B. Ning, B.-L. Zhang, Sampled-data control systems with non-uniform sampling: A survey of methods and trends, Annual Reviews in Control. (2023). [DOI:10.1016/j.arcontrol.2023.03.004]
31. [31] T. Başar, P. Bernhard, H∞-optimal control and related minimax design problems, (No Title). (2008). [DOI:10.1007/978-0-8176-4757-5]
32. [32] M. Wang, P. Li, X. Li, Event-triggered delayed impulsive control for input-to-state stability of nonlinear impulsive systems, Nonlinear Analysis: Hybrid Systems. 47 (2023) 101277. [DOI:10.1016/j.nahs.2022.101277]
33. [33] F. Shi, Y. Liu, Y. Li, J. Qiu, Input-to-state stability of nonlinear systems with hybrid inputs and delayed impulses, Nonlinear Analysis: Hybrid Systems. 44 (2022) 101145. [DOI:10.1016/j.nahs.2021.101145]
34. [34] Y. V Mikheev, V.A. Sobolev, E.M. Fridman, Asymptotic analysis of digital control systems, Automation and Remote Control. 49 (1988) 1175-1180.
35. [35] K.J. Åström, B. Wittenmark, Adaptive control, Courier Corporation, 2013.
36. [36] E.M. Fridman, Use of models with aftereffect in the problem of the design of optimal digital-control systems, Automation and Remote Control. 53 (1992) 1523-1528.
37. [37] Y. He, Q.-G. Wang, C. Lin, M. Wu, Delay-range-dependent stability for systems with time-varying delay, Automatica. 43 (2007) 371-376. [DOI:10.1016/j.automatica.2006.08.015]
38. [38] P. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica. 47 (2011) 235-238. [DOI:10.1016/j.automatica.2010.10.014]
39. [39] K. Liu, E. Fridman, Wirtinger's inequality and Lyapunov-based sampled-data stabilization, Automatica. 48 (2012) 102-108. [DOI:10.1016/j.automatica.2011.09.029]
40. [40] W. Ma, X.-C. Jia, F. Yang, X. Chi, Fuzzy dynamic output feedback control for nonlinear networked multirate sampled-data systems: An integral inequality method, Fuzzy Sets and Systems. 452 (2023) 110-130. [DOI:10.1016/j.fss.2022.05.012]
41. [41] R. Subramaniyam, Y.H. Joo, H∞ Control design for discrete‐time nonlinear delayed systems, International Journal of Robust and Nonlinear Control. 33 (2023) 6188-6210. [DOI:10.1002/rnc.6693]
42. [42] Y. Wang, C. Hua, Y. Qiu, Robust stability and H∞ control for networked control systems with transmission delay and its application to 2 DoF laboratory helicopter, Journal of the Franklin Institute. 360 (2023) 2827-2847. [DOI:10.1016/j.jfranklin.2022.12.011]
43. [43] M.M. Azimi, A.A. Afzalian, R. Ghaderi, Robust decentralised state feedback control design for large-scale networked control system, International Journal of Systems Science. 49 (2018) 1809-1820. [DOI:10.1080/00207721.2018.1479459]
44. [44] M.M. Azimi, A.A. Afzalian, R. Ghaderi, Robust decentralized networked control design for multi-area load frequency control, in: 2017 Iranian Conference on Electrical Engineering (ICEE), IEEE, 2017: pp. 853-858. [DOI:10.1109/IranianCEE.2017.7985158]
45. [45] م. حسینی تودشکی, Adaptive Robust H∞ finite-time congestion control design for TCP/AQM Network System with parametric uncertainties, فصلنامه مهندسی برق دانشگاه تبریز. undefined (1401).
46. [46] X. Zhao, L. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE Transactions on Automatic Control. 57 (2011) 1809-1815. [DOI:10.1109/TAC.2011.2178629]
47. [47] L. Hou, X. Ma, H. Sun, Stabilization of switched linear systems under asynchronous switching subject to admissible edge-dependent average dwell time, Frontiers of Information Technology & Electronic Engineering. 23 (2022) 810-822. [DOI:10.1631/FITEE.2000698]
48. [48] J. Wu, R. Yang, J. Sun, Y. Zhu, Event-triggered finite-time stabilization of nonlinear switched affine systems under mode-dependent and state-dependent switchings, Control Engineering Practice. 138 (2023) 105602. [DOI:10.1016/j.conengprac.2023.105602]
49. [49] H. Zhang, Y. Zhang, X. Zhao, Event-Triggered Adaptive Dynamic Programming for Hierarchical Sliding-Mode Surface-Based Optimal Control of Switched Nonlinear Systems, IEEE Transactions on Automation Science and Engineering. (2023). [DOI:10.1109/TASE.2023.3303359]
50. [50] L. Zhang, E.-K. Boukas, Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica. 45 (2009) 463-468. [DOI:10.1016/j.automatica.2008.08.010]
51. [51] R. Ling, L. Yu, D. Zhang, W. Zhang, A Markovian system approach to distributed H∞ filtering for sensor networks with stochastic sampling, Journal of the Franklin Institute. 351 (2014) 4998-5014. [DOI:10.1016/j.jfranklin.2014.07.017]
52. [52] Z. Cao, Y. Niu, Y. Zou, Self-triggered multi-mode control of Markovian jump systems, Automatica. 149 (2023) 110837. [DOI:10.1016/j.automatica.2022.110837]
53. [53] N. Xiao, L. Xie, L. Qiu, Feedback stabilization of discrete-time networked systems over fading channels, IEEE Transactions on Automatic Control. 57 (2012) 2176-2189. [DOI:10.1109/TAC.2012.2183450]
54. [54] S. Kim, B.J. Kim, Reinforcement Learning for Accident Risk-Adaptive V2X Networking, IEEE Vehicular Technology Conference. 2020-Novem (2020). https://doi.org/10.1109/VTC2020-Fall49728.2020.9348445 [DOI:10.1109/VTC2020-Fall49728.2020.9348445.]
55. [55] A. de Winter, S. Baldi, Real-life implementation of a GPS-based path-following system for an autonomous vehicle, Sensors (Switzerland). 18 (2018). https://doi.org/10.3390/s18113940 [DOI:10.3390/s18113940.]
56. [56] continental-automotive, (n.d.). http://www.continental-automotive.com/www/%0Aautomotive_de_en/themes/commercial_vehicles/ch_interior_en/ehorizon_en/03_dynamic_ehorizon_en.%0Ahtml.
57. [57] A. Barimani, R. Salehnezhad, B. Nasiri Omali, A.A. Ghaffari, D. Domiri Ganji, Wireless Navigation and Control of Smart Robots and Submarines through Smart Network and Telecommunications, in: دومین کنفرانس بین المللی مکانیک، برق، مهندسی هوافضا و علوم مهندسی, 1401.
58. [58] Y.A. Mill, F. Vargas, F. Molano, E. Mojica, A Wireless Networked Control Systems Review, (n.d.).
59. [59] Y. Yoldaş, A. Önen, S.M. Muyeen, A. V. Vasilakos, İ. Alan, Enhancing smart grid with microgrids: Challenges and opportunities, Renewable and Sustainable Energy Reviews. 72 (2017) 205-214. https://doi.org/10.1016/j.rser.2017.01.064 [DOI:10.1016/j.rser.2017.01.064.]
60. [60] Q. Zhou, M. Shahidehpour, A. Paaso, S. Bahramirad, A. Alabdulwahab, A. Abusorrah, Distributed Control and Communication Strategies in Networked Microgrids, IEEE Communications Surveys and Tutorials. 22 (2020) 2586-2633. https://doi.org/10.1109/COMST.2020.3023963 [DOI:10.1109/COMST.2020.3023963.]
61. [61] M.P. Talatape, A.A. Afzalian, A non-singular terminal sliding mode controller for a communication-based hybrid microgrid, Journal of Energy Storage. 76 (2024) 109742. [DOI:10.1016/j.est.2023.109742]
62. [62] Q. Shafiee, Č. Stefanović, T. Dragičević, P. Popovski, J.C. Vasquez, J.M. Guerrero, Robust networked control scheme for distributed secondary control of islanded microgrids, IEEE Transactions on Industrial Electronics. 61 (2013) 5363-5374. [DOI:10.1109/TIE.2013.2293711]
63. [63] Y. Liu, C. Yang, L. Jiang, S. Xie, Y. Zhang, INTERNET OF THINGS FOR SMART CITITES : Intelligent Edge Computing for IoT-Based Energy Management in Smart Cities, IEEE Network. 33 (2019) 111-117. https://doi.org/10.1109/MNET.2019.1800254 [DOI:10.1109/MNET.2019.1800254.]
64. [64] J. Al Dakheel, C. Del Pero, Smart Buildings Features and Key Performance Indicators: A Review, Sustainable Cities and Society. (2020) 102328. https://doi.org/10.1016/j.scs.2020.102328 [DOI:10.1016/j.scs.2020.102328.]
65. [65] M. Roccotelli, A.M. Mangini, Advances on Smart Cities and Smart Buildings, (2022) 10-12. [DOI:10.3390/books978-3-0365-4016-0]
66. [66] L.Q. Zhuang, D.H. Zhang, M.M. Wong, Wireless Sensor Networks for Networked Manufacturing Systems, in: Factory Automation, IntechOpen, 2010. [DOI:10.5772/9530]
67. [67] J. Michaloski, A. Wavering, M.L. cAnthony Barbera, Vehicle Systems Version 2.0, (n.d.).
68. [68] R.W. Prouty, Helicopter performance, stability, and control, 1995.
69. [69] O. Spinka, S. Kroupa, Z. Hanzálek, Control system for unmanned aerial vehicles, in: 2007 5th IEEE International Conference on Industrial Informatics, IEEE, 2007: pp. 455-460. [DOI:10.1109/INDIN.2007.4384800]
70. [70] T. Segaran, J. Hammerbacher, Beautiful data: the stories behind elegant data solutions, " O'Reilly Media, Inc.," 2009.
71. [71] X. Zhang, S. Member, Q. Han, X. Ge, D. Ding, Networked Control Systems : A Survey of Trends and Techniques, IEEE/CAA Journal of Automatica Sinica. PP (n.d.) 1-17. https://doi.org/10.1109/JAS.2019.1911651 [DOI:10.1109/JAS.2019.1911651.]
72. [72] M. Pirani, A. Mitra, S. Sundaram, A Survey of Graph-Theoretic Approaches for Analyzing the Resilience of Networked Control Systems, (2022). [DOI:10.1016/j.automatica.2023.111264]
73. [73] F.S. Gharehchopogh, Quantum-inspired metaheuristic algorithms: comprehensive survey and classification, Artificial Intelligence Review. 56 (2023) 5479-5543. [DOI:10.1007/s10462-022-10280-8]
74. [74] C.S. Shih, K.H. Lee, J.J. Chou, K.J. Lin, Data-driven IoT applications design for smart city and smart buildings, 2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 - . (2018) 1-8. https://doi.org/10.1109/UIC-ATC.2017.8397394 [DOI:10.1109/UIC-ATC.2017.8397394.]
75. [75] K. Shafique, B.A. Khawaja, F. Sabir, S. Qazi, M. Mustaqim, Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios, IEEE Access. 8 (2020) 23022-23040. https://doi.org/10.1109/ACCESS.2020.2970118 [DOI:10.1109/ACCESS.2020.2970118.]
76. [76] Borah, Kumar, Development of an Embedded Moisture Sensing Device for a Distributive Network to Control Irrigation using IoT, فصلنامه مدیریت فناوری اطلاعات. undefined (1402).
77. [77] C.X. Wang, M. Di Renzo, S. Stańczak, S. Wang, E.G. Larsson, Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges, IEEE Wireless Communications. 27 (2020) 16-23. https://doi.org/10.1109/MWC.001.1900292 [DOI:10.1109/MWC.001.1900292.]
78. [78] F. Salahdine, T. Han, N. Zhang, 5G, 6G, and Beyond: Recent advances and future challenges, Annals of Telecommunications. (2023) 1-25. [DOI:10.1002/spy2.271]
79. [79] 5G Infrastructure Association, European Vision for the 6G Network Ecosystem, 5G Infrastructure Association. (2021). [DOI:10.5281/zenodo.5007671.]
80. [80] G. Carvalho, B. Cabral, V. Pereira, J. Bernardino, Edge computing: current trends, research challenges and future directions, Computing. 103 (2021) 993-1023. [DOI:10.1007/s00607-020-00896-5]
81. [81] C. Kwon, I. Hwang, Reachability analysis for safety assurance of cyber-physical systems against cyber attacks, IEEE Transactions on Automatic Control. 63 (2017) 2272-2279. [DOI:10.1109/TAC.2017.2761762]
82. [82] F. Zhang, H.A.D.E. Kodituwakku, J.W. Hines, J. Coble, Multilayer data-driven cyber-attack detection system for industrial control systems based on network, system, and process data, IEEE Transactions on Industrial Informatics. 15 (2019) 4362-4369. [DOI:10.1109/TII.2019.2891261]
83. [83] A. Sargolzaei, A. Abbaspour, M.A. Al Faruque, A. Salah Eddin, K. Yen, Security challenges of networked control systems, Studies in Systems, Decision and Control. 145 (2018) 77-95. https://doi.org/10.1007/978-3-319-74412-4_6 [DOI:10.1007/978-3-319-74412-4_6.]
84. [84] E. Mousavinejad, F. Yang, Q.-L. Han, L. Vlacic, A novel cyber attack detection method in networked control systems, IEEE Transactions on Cybernetics. 48 (2018) 3254-3264. [DOI:10.1109/TCYB.2018.2843358]
85. [85] N. Oliveira, I. Praça, E. Maia, O. Sousa, Intelligent cyber attack detection and classification for network-based intrusion detection systems, Applied Sciences. 11 (2021) 1674. [DOI:10.3390/app11041674]
86. [86] NASA Software Catalog, NASA. (n.d.). https://www.nasa.gov/press-release/nasa-software-catalog-offers-free-programs-for-earth-science-more.
87. [87] Space Telecommunications Radio System (STRS) Reference Implementation (RI) (LEW-19083-1), NASA. (n.d.). https://software.nasa.gov/software/LEW-19083-1.
88. [88] PDSC: Planetary Data System Coincidences (NPO-50785-1), NASA. (n.d.). https://software.nasa.gov/software/NPO-50785-1.
89. [89] DTKA, a Prototype Implementation of Delay-Tolerant Security Key Distribution (NPO-49413-1), NASA. (n.d.). https://software.nasa.gov/software/NPO-49413-1.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb