1. [1] Abouheaf, M.I., et al., Multi-agent discrete-time graphical games and reinforcement learning solutions. Automatica, 2014. 50(12): p. 3038-3053. [
DOI:10.1016/j.automatica.2014.10.047]
2. [2] Wang, X., Y. Hong, and H. Ji, Distributed optimization for a class of nonlinear multiagent systems with disturbance rejection. IEEE transactions on Cybernetics, 2015. 46(7): p. 1655-1666. [
DOI:10.1109/TCYB.2015.2453167]
3. [3] Ge, X. and Q.-L. Han, Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE transactions on cybernetics, 2016. 47(8): p. 1807-1819. [
DOI:10.1109/TCYB.2016.2570860]
4. [4] Wen, G., et al., Pinning a complex network to follow a target system with predesigned control inputs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018. 50(6): p. 2293-2304. [
DOI:10.1109/TSMC.2018.2803147]
5. [5] Esmailifar, S.M. and F. Saghafi, Cooperative localization of marine targets by UAVs. Mechanical Systems and Signal Processing, 2017. 87: p. 23-42. [
DOI:10.1016/j.ymssp.2016.08.027]
6. [6] González, A., et al., Predictor-feedback synthesis in coordinate-free formation control under time-varying delays. Automatica, 2020. 113: p. 108811. [
DOI:10.1016/j.automatica.2020.108811]
7. [7] Yamchi, M.H. and R.M. Esfanjani, Distributed predictive formation control of networked mobile robots subject to communication delay. Robotics and Autonomous Systems, 2017. 91: p. 194-207. [
DOI:10.1016/j.robot.2017.01.005]
8. [8] Jiang, H., Q. Bi, and S. Zheng, Impulsive consensus in directed networks of identical nonlinear oscillators with switching topologies. Communications in Nonlinear Science and Numerical Simulation, 2012. 17(1): p. 378-387. [
DOI:10.1016/j.cnsns.2011.04.030]
9. [9] Olfati-Saber, R. and R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on automatic control, 2004. 49(9): p. 1520-1533. [
DOI:10.1109/TAC.2004.834113]
10. [10] Wellman, B.J. and J.B. Hoagg, A flocking algorithm with individual agent destinations and without a centralized leader. Systems & Control Letters, 2017. 102: p. 57-67. [
DOI:10.1016/j.sysconle.2017.01.006]
11. [11] Toner, J. and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking. Physical review E, 1998. 58(4): p. 4828. [
DOI:10.1103/PhysRevE.58.4828]
12. [12] Kar, S. and J.M. Moura, Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise. IEEE Transactions on Signal Processing, 2008. 57(1): p. 355-369. [
DOI:10.1109/TSP.2008.2007111]
13. [13] Ding, L., Q.-L. Han, and E. Sindi, Distributed cooperative optimal control of DC microgrids with communication delays. IEEE Transactions on Industrial Informatics, 2018. 14(9): p. 3924-3935. [
DOI:10.1109/TII.2018.2799239]
14. [14] Chen, J., et al., Fusion state estimation for power systems under DoS attacks: A switched system approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019. 49(8): p. 1679-1687. [
DOI:10.1109/TSMC.2019.2895912]
15. [15] Wan, Y., et al., On the structural perspective of computational effectiveness for quantized consensus in layered UAV networks. IEEE Transactions on Control of Network Systems, 2018. 6(1): p. 276-288. [
DOI:10.1109/TCNS.2018.2813926]
16. [16] Chu, H., et al., Consensus of multiagent systems with relative state saturations. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019. 51(4): p. 2391-2402. [
DOI:10.1109/TSMC.2019.2912980]
17. [17] Jiang, W., Y. Chen, and T. Charalambous, Consensus of general linear multi-agent systems with heterogeneous input and communication delays. IEEE Control Systems Letters, 2020. 5(3): p. 851-856. [
DOI:10.1109/LCSYS.2020.3006452]
18. [18] Wang, D. and W. Wang, Necessary and sufficient conditions for containment control of multi-agent systems with time delay. Automatica, 2019. 103: p. 418-423. [
DOI:10.1016/j.automatica.2018.12.029]
19. [19] Luo, S., et al., Output consensus of heterogeneous linear multi-agent systems with communication, input and output time-delays. Journal of the Franklin Institute, 2020. 357(17): p. 12825-12839. [
DOI:10.1016/j.jfranklin.2020.09.032]
20. [20] Zhou, B., Truncated predictor feedback for time-delay systems. 2014: Springer. [
DOI:10.1007/978-3-642-54206-0]
21. [21] Krstic, M., Delay compensation for nonlinear, adaptive, and PDE systems. 2009. [
DOI:10.1007/978-0-8176-4877-0]
22. [22] Kharitonov, V.L., Lyapunov functionals and matrices. Annual reviews in control, 2010. 34(1): p. 13-20. [
DOI:10.1016/j.arcontrol.2010.02.001]
23. [23] Gao, Q. and H.R. Karimi, Stability, control and application of time-delay systems. 2019: Butterworth-Heinemann.
24. [24] Kharitonov, V.L. and D. Melchor-Aguilar, On delay-dependent stability conditions. Systems & Control Letters, 2000. 40(1): p. 71-76. [
DOI:10.1016/S0167-6911(00)00003-7]
25. [25] Fridman, E., Introduction to time-delay systems: Analysis and control. 2014: Springer. [
DOI:10.1007/978-3-319-09393-2]
26. [26] Hou, W., et al., Consensus conditions for general second-order multi-agent systems with communication delay. Automatica, 2017. 75: p. 293-298. [
DOI:10.1016/j.automatica.2016.09.042]
27. [27] Wang, Z., J. Xu, and H. Zhang, Consensusability of multi-agent systems with time-varying communication delay. Systems & Control Letters, 2014. 65: p. 37-42. [
DOI:10.1016/j.sysconle.2013.12.011]
28. [28] Li, Y., C. Wang, and D. Liang, Truncated prediction-based distributed consensus control of linear multi-agent systems with discontinuous communication and input delay. Neurocomputing, 2020. 409: p. 217-230. [
DOI:10.1016/j.neucom.2020.05.048]
29. [29] Ahmed, Z., et al., Consensus control of multi-agent systems with input and communication delay: A frequency domain perspective. ISA transactions, 2020. 101: p. 69-77. [
DOI:10.1016/j.isatra.2020.02.005]
30. [30] Yan, Z., et al., Event-triggered formation control for time-delayed discrete-time multi-agent system applied to multi-UAV formation flying. Journal of the Franklin Institute, 2023. 360(5): p. 3677-3699. [
DOI:10.1016/j.jfranklin.2023.01.036]
31. [31] Yang, W., Z. Shi, and Y. Zhong, Robust time‐varying formation control for uncertain multi‐agent systems with communication delays and nonlinear couplings. International Journal of Robust and Nonlinear Control, 2024. 34(1): p. 147-166. [
DOI:10.1002/rnc.6965]
32. [32] Jenabzadeh, A. and W. Zhang, Tracking control problem in general linear and Lipschitz nonlinear multi-agent systems with jointly connected topology. Journal of the Franklin Institute, 2020. 357(10): p. 6121-6136. [
DOI:10.1016/j.jfranklin.2020.04.006]
33. [33] Wang, J., et al., Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective. 2020: Academic Press. [
DOI:10.1201/9781003164142]
34. [34] Chu, H., et al., Adaptive PI control for consensus of multiagent systems with relative state saturation constraints. IEEE Transactions on Cybernetics, 2019. 51(4): p. 2296-2302. [
DOI:10.1109/TCYB.2019.2954955]
35. [35] Chu, H., et al., Consensus of multiagent systems with time-varying input delay and relative state saturation constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020. 51(11): p. 6938-6944. [
DOI:10.1109/TSMC.2019.2961395]
36. [36] Chu, H., et al., Observer-based consensus of nonlinear multiagent systems with relative state estimate constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018. 50(7): p. 2456-2465. [
DOI:10.1109/TSMC.2018.2818172]
37. [37] Zanganeh, J., S.K. Hosseini Sani, and N. Pariz, Consensus tracking control for time-varying delayed linear multi-agent systems under relative state saturation constraints. Transactions of the Institute of Measurement and Control, 2023: p. 01423312231162970. [
DOI:10.1177/01423312231162970]
38. [38] Fridman, E., Tutorial on Lyapunov-based methods for time-delay systems. European Journal of Control, 2014. 20(6): p. 271-283. [
DOI:10.1016/j.ejcon.2014.10.001]
39. [39] Adams, R.J., et al., Robust multivariable flight control. 2012: Springer Science & Business Media.