1. [1] G. Picard, "Trajectory Coordination based on Distributed Constraint Optimization Techniques in Unmanned Air Traffic Management," Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2, pp. 1065-1073, 2022.
2. [2] J. Pellebergs and S. Aerosystems, "The MIDCAS project," 27th Congr. Int. Counc. Aeronaut. Sci. 2010, ICAS 2010, vol. 4, pp. 3241-3247, 2010.
3. [3] M. Strohmeier, M. Schäfer, V. Lenders, and I. Martinovic, "Realities and challenges of nextgen air traffic management: The case of ADS-B," IEEE Commun. Mag., vol. 52, no. 5, pp. 111-118, 2014, doi: 10.1109/MCOM.2014.6815901. [
DOI:10.1109/MCOM.2014.6815901]
4. [4] C. A. Nava-Gaxiola and C. Barrado, "Performance measures of the SESAR Southwest functional airspace block," J. Air Transp. Manag., vol. 50, pp. 21-29, 2016, doi: 10.1016/j.jairtraman.2015.09.003. [
DOI:10.1016/j.jairtraman.2015.09.003]
5. [5] L. Bo, C. Song, S. Bai, J. Huang, R. Ma, K. Wan, and E. Neretin, "Multi-UAV trajectory planning during cooperative tracking based on a Fusion Algorithm integrating MPC and standoff." Drones, vol. 7, no. 3, pp. 196-220, 2023, doi: 10.3390/drones7030196. [
DOI:10.3390/drones7030196]
6. [6] B. Jiang, B. Li, W. Zhou, L.Y. Lo, C.K. Chen, C.Y. Wen, "Neural Network Based Model Predictive Control for a Quadrotor UAV." Aerospace, vol. 9, no. 8, pp. 460-465, 2022, doi: 10.3390/aerospace9080460. [
DOI:10.3390/aerospace9080460]
7. [7] W. Pan, Q. He, Y. Huang, L. Qin, "Four-Dimensional Trajectory Planning for Urban Air Traffic Vehicles Based on Improved RRT Algorithm," IEEE Access, vol. 11, pp. 81113-811123, 2023. [
DOI:10.1109/ACCESS.2023.3300374]
8. [8] J. Mercer et al., "Impact of Automation Support on the Conflict Resolution Task in a Human-in-the-Loop Air Traffic Control Simulation," IFAC-PapersOnLine, vol. 49, no. 19, pp. 36-41, 2016, doi: 10.1016/j.ifacol.2016.10.458. [
DOI:10.1016/j.ifacol.2016.10.458]
9. [9] E. D'Amato, M. Mattei, and I. Notaro, "Bi-level Flight Path Planning of UAV Formations with Collision Avoidance," J. Intell. Robot. Syst. Theory Appl., vol. 93, no. 1-2, pp. 193-211, 2019, doi: 10.1007/s10846-018-0861-1. [
DOI:10.1007/s10846-018-0861-1]
10. [10] J. Dentler et al., "Collision Avoidance Effects on the Mobility of a UAV Swarm Using Chaotic Ant Colony with Model Predictive Control," J. Intell. Robot. Syst. Theory Appl., vol. 93, no. 1-2, pp. 227-243, 2019, doi: 10.1007/s10846-018-0822-8. [
DOI:10.1007/s10846-018-0822-8]
11. [11] H. X. Chen, Y. Nan, and Y. Yang, "Real-time conflict resolution algorithm for multi-UAV based on model predict control," Algorithms, vol. 12, no. 2, 2019, doi: 10.3390/a12020047. [
DOI:10.3390/a12020047]
12. [12] R. C. Gutiérrez-Urquídez, G. Valencia-Palomo, O. M. Rodríguez-Elias, and L. Trujillo, "Systematic selection of tuning parameters for efficient predictive controllers using a multiobjective evolutionary algorithm," Appl. Soft Comput. J., vol. 31, pp. 326-338, 2015, doi: 10.1016/j.asoc.2015.02.033. [
DOI:10.1016/j.asoc.2015.02.033]
13. [13] C. Carbone, U. Ciniglio, F. Corraro, and S. Luongo, "A novel 3D geometric algorithm for aircraft autonomous collision avoidance," Proc. IEEE Conf. Decis. Control, pp. 1580-1585, 2006, doi: 10.1109/cdc.2006.376742. [
DOI:10.1109/CDC.2006.376742]
14. [14] E. D'Amato, M. Mattei, and I. Notaro, "Distributed Reactive Model Predictive Control for Collision Avoidance of Unmanned Aerial Vehicles in Civil Airspace," J. Intell. Robot. Syst. Theory Appl., vol. 97, no. 1, pp. 185-203, 2020, doi: 10.1007/s10846-019-01047-5. [
DOI:10.1007/s10846-019-01047-5]
15. [15] J. Yoo and S. Devasia, "Application of provably-safe conflict resolution for air traffic control," Proc. IEEE Conf. Decis. Control, pp. 478-483, 2012, doi: 10.1109/CDC.2012.6427035. [
DOI:10.1109/CDC.2012.6427035]
16. [16] C. C. Fattori et al., "Analysis Framework for Improved Conflict Prediction in ATC System Modernization," IFAC-PapersOnLine, vol. 50, no. 1, pp. 14650-14655, 2017, doi: 10.1016/j.ifacol.2017.08.1905. [
DOI:10.1016/j.ifacol.2017.08.1905]
17. [17] A. Richards and J. How, "Decentralized model predictive control of cooperating UAVs," Proc. IEEE Conf. Decis. Control, vol. 4, pp. 4286-4291, 2004, doi: 10.1109/CDC.2004.1429425. [
DOI:10.1109/CDC.2004.1429425]
18. [18] X. Wang, V. Yadav, and S. N. Balakrishnan, "Cooperative UAV formation flying with obstacle/collision avoidance," IEEE Trans. Control Syst. Technol., vol. 15, no. 4, pp. 672-679, 2007, doi: 10.1109/TCST.2007.899191. [
DOI:10.1109/TCST.2007.899191]
19. [19] Y. Seifouripour, H. Nobahari, "Model-free control of a fixed-wing aircraft based on convolutional neural networks," Journal of Control, Just Accepted, 2024. [
DOI:10.1016/j.jfranklin.2024.106664]
20. [20] FOCA, "Annexes to the Convention on International Civil Aviation (ICAO)," Fed. Off. Aviat., 2020.
21. [21] R. P. Anderson and D. Milutinovic, "A stochastic approach to dubins vehicle tracking problems," IEEE Trans. Automat. Contr., vol. 59, no. 10, pp. 2801-2806, 2014, doi: 10.1109/TAC.2014.2314224. [
DOI:10.1109/TAC.2014.2314224]
22. [22] P. K. Menon, G. D. Sweriduk, and B. Sridhar, "Optimal strategies for free flight air traffic conflict resolution," 1997 Guid. Navig. Control Conf., pp. 455-468, 1997, doi: 10.2514/6.1997-3546. [
DOI:10.2514/6.1997-3546]
23. [23] A. K. Sedigh, P. Bagheri, "Review of model predictive control tuning methods and modern tuning solutions," Journal of Control, Vol. 3, No. 8, pp. 69-85, 2014.
24. [24] P. Bagheri, "Model Predictive Controller Based on Steady-State Value of Control Signal, Analytically Tuning and Closed-Loop Studies," Journal of Control, Vol. 10, No. 3, pp.39-51, 2016.
25. [25] P. Bagheri, P, "Pole‐zero assignment in model predictive control, using analytical tuning approach," Optimal Control Applications and Methods, Vol. 42, No. 5, pp.1253-1268, 2021. [
DOI:10.1002/oca.2724]
26. [26] Y. B. Chen, J. Q. Yu, X. L. Su, and G. C. Luo, "Path Planning for Multi-UAV Formation," J. Intell. Robot. Syst. Theory Appl., vol. 77, no. 1, pp. 229-246, 2015, doi: 10.1007/s10846-014-0077-y. [
DOI:10.1007/s10846-014-0077-y]