دوره 18، شماره 3 - ( مجله کنترل، جلد 18، شماره 3، پاییز 1403 )                   جلد 18 شماره 3,1403 صفحات 89-71 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasan Nezhad A, Ranjbar Noiey A, Soltanpour M R, Veysi M. A New Decoupled Sliding Mode Control for Flexible Joint Robotic Manipulators Trajectory Tracking in the Presence of Chaos with Practical Implementation. JoC 2024; 18 (3) :71-89
URL: http://joc.kntu.ac.ir/article-1-1026-fa.html
حسن نژاد عبدالله، رنجبر نوعی ابوالفضل، سلطانپور محمدرضا، ویسی محمد. کنترل کننده مد لغزشی دکوپله جدید به منظور ردیابی موقعیت بازوهای رباتیک با مفاصل انعطاف پذیر در حضور آشوب با پیاده سازی عملی. مجله کنترل. 1403; 18 (3) :71-89

URL: http://joc.kntu.ac.ir/article-1-1026-fa.html


1- دانشکده مهندسی برق، گروه کنترل، دانشگاه صنعتی نوشیروانی بابل،مازندران، ایران
2- دانشکده مهندسی برق، دانشگاه علوم و فنون هوایی شهید ستاری ،تهران، ایران
3- دانشکده مهندسی برق، دانشگاه خاتم الانبیاء تهران، ایران
چکیده:   (605 مشاهده)
این مقاله یک کنترل کننده مد لغزشی دکوپله جدید، به منظور ردیابی موقعیت بازوهای رباتیک با مفاصل انعطاف‌پذیر، در حضور آشوب و عدم قطعیت، ارائه می‌کند. در گام اول از یک مرجع آشوبناک با رویکرد همزمان سازی برای ایجاد آشوب در دینامیک بازو استفاده شده و سپس رفتار کنترل کننده مد لغزشی دکوپله معمولی تحلیل می شود. نشان داده شده که همگرایی همزمان سطوح لغزش و پایداری مجانبی این کنترل کننده در برخی حالات می تواند با چالش هایی همراه باشد. بعد از آن، با به‌کارگیری یک سطح لغزشی ترمینال سریع غیرمنفرد و طراحی یک متغیر کوپلینگ جدید و هم‌چنین ارائه یک روش جدید برای کاهش چترینگ، کنترل‌کننده‌ای پیشنهاد شده که نه تنها می‌تواند مشکلات کنترل کننده مد لغزشی دکوپله معمولی را حل کند، بلکه می‌توانند زمان همگرایی را بهبود بخشد، پایداری مجانبی سراسری زمان-محدود را برای سیستم کنترل حلقه بسته در حضور آشوب و عدم قطعیت¬های ساختاری و غیرساختاری فراهم نموده و دامنه چترینگ را نیز کاهش دهد. در نهایت، به منظور ارزیابی عملکرد روش پیشنهادی، برخی شبیه‌سازی‌ها و پیاده‌سازی‌های عملی به صورت سخت‌افزار در حلقه انجام و نتایج با دو روش دیگر مقایسه شده است. نتایج حاصله کارایی کنترل پیشنهادی را در تضمین پایداری مجانبی،کاهش زاویه انحراف، بهبود زمان همگرایی وکاهش چترینگ تایید می‌کنند.
متن کامل [PDF 2274 kb]   (51 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: تخصصي
دریافت: 1403/1/19 | پذیرش: 1403/8/22 | انتشار الکترونیک پیش از انتشار نهایی: 1403/9/2 | انتشار: 1403/9/30

فهرست منابع
1. [1] Alandoli EA, Lee TS. "A critical review of control techniques for flexible and rigid link manipulators", Robotica, 2020 ;38(12):2239-65. [DOI:10.1017/S0263574720000223]
2. [2] Ozgoli S, Taghirad HD. "A survey on the control of flexible joint robots", Asian journal of control. 2006 ;8(4):332-44. [DOI:10.1111/j.1934-6093.2006.tb00285.x]
3. [3] Sun L, Zhao W, Yin W, Sun N, Liu J. "Proxy based position control for flexible joint robot with link side energy feedback", Robotics and Autonomous Systems. 2019, 1:121:103272. [DOI:10.1016/j.robot.2019.103272]
4. [4] Yan Z, Lai X, Meng Q, Zhang P, Wu M. "Tracking control of single‐link flexible‐joint manipulator with unmodeled dynamics and dead zone", International Journal of Robust and Nonlinear Control. 2021, 10;31(4):1270-87. [DOI:10.1002/rnc.5335]
5. [5] Minagar S, Kazemitabar J, Alizadeh M. "Fractional dynamic sliding mode control for uncertain chaotic systems applied to a chaotic robot arm under dynamic load", International Journal of Sensors Wireless Communications and Control. 2020 1, 10(6):1023-31. [DOI:10.2174/2210327910999200818091512]
6. [6] Gholipour S, Shandiz HT, Alizadeh M, Minagar S, Kazemitabar J. "Dynamic sliding mode control based on fractional calculus subject to uncertain delay based chaotic pneumatic robot", International Journal of Sensors Wireless Communications and Control. 2020, 1;10(3):413-20. [DOI:10.2174/2210327909666190319142505]
7. [7] He B, Wang S, Liu Y. "Underactuated robotics: a review. International Journal of Advanced Robotic Systems", 2019, 16;16(4):1729881419862164. [DOI:10.1177/1729881419862164]
8. [8] Lochan K, Roy BK, Subudhi B. "Chaotic tip trajectory tracking and deflection suppression of a two-link flexible manipulator using second-order fast terminal SMC", Transactions of the Institute of Measurement and Control. 2019, 41(12):3292-308. [DOI:10.1177/0142331218819700]
9. [9] Ott E, Grebogi C, Yorke JA. "Controlling chaos", Physical review letters. 1990, 12;64(11):1196. [DOI:10.1103/PhysRevLett.64.1196]
10. [10] Li Y, Wu Y. "Neural network based adaptive chaotification of uncertain robot manipulators incorporating motor dynamics", IOP Conference Series: Materials Science and Engineering, 2018, 1 (Vol. 428, No. 1, p. 012054). [DOI:10.1088/1757-899X/428/1/012054]
11. [11] Kandroodi MR, Farivar F, Pedram MZ, Shoorehdeli MA. "Variable structure control and anti-control of flexible joint manipulator with experimental validation", In2011 IEEE International Conference on Mechatronics, 2011, Vol, 13, pp. 294-299. [DOI:10.1109/ICMECH.2011.5971298]
12. [12] Yin W, Sun L, Wang M, Liu J. "Nonlinear state feedback position control for flexible joint robot with energy shaping", Robotics and Autonomous Systems. 2018, 1:99:121-34. [DOI:10.1016/j.robot.2017.10.007]
13. [13] Gao H, He W, Zhou C, Sun C. "Neural network control of a two-link flexible robotic manipulator using assumed mode method", IEEE Transactions on Industrial Informatics. 2018, 22;15(2):755-65. [DOI:10.1109/TII.2018.2818120]
14. [14] Ling S, Wang H, Liu PX. "Adaptive fuzzy tracking control of flexible-joint robots based on command filtering", IEEE Transactions on Industrial Electronics. 2019, 10;67(5):4046-55. [DOI:10.1109/TIE.2019.2920599]
15. [15] Spyrakos-Papastavridis E, Dai JS. "Minimally model-based trajectory tracking and variable impedance control of flexible-joint robots", IEEE Transactions on Industrial Electronics. 2020, 20;68(7):6031-41. [DOI:10.1109/TIE.2020.2994886]
16. [16] Rostami Kandroodi Mojtaba, Farivar Faeze A. Mahdi, "Control of flexible joint manipulator via variable structure rule-based fuzzy control and chaos anti-control with experimental validation", Intelligence systems in electrical engineering, 4th year, No. 4, (2014), 1-12.
17. [17] Lochan K, Singh JP, Roy BK, Subudhi B. "Chaotic path planning for a two-link flexible robot manipulator using a composite control technique", In Recent Advances in Chaotic Systems and Synchronization 2019, 1 (pp. 233-257). [DOI:10.1016/B978-0-12-815838-8.00012-1]
18. [18] Dianwei Qian, Jianqiang Yi, "Hierarchical sliding mode control for under-actuated cranes design", analysis and simulation, Springer Link, 2015, 978-3-662-48417-3. [DOI:10.1007/978-3-662-48417-3]
19. [19] Soltanpour MR, Moattari M. "Voltage based sliding mode control of flexible joint robot manipulators in presence of uncertainties", Robotics and Autonomous Systems. 2019, 1:118:204-19. [DOI:10.1016/j.robot.2019.05.014]
20. [20] Lo JC, Kuo YH. "Decoupled fuzzy sliding-mode control", IEEE Transactions on fuzzy systems. 1998 ;6(3):426-35. [DOI:10.1109/91.705510]
21. [21] Arman Rajaei, Amin Vahidi-Moghaddam, Mohammad Eghtesad, DS Necsulescu and Ehsan Azadi Yazdi, "Nonsingular decoupled terminal sliding-mode control for a class of fourth-order underactuated nonlinear systems with unknown external disturbance", IOP, Engineering Research Express,Vol. 2, No. 3, 2020, 035028. [DOI:10.1088/2631-8695/abb3b1]
22. [22] Xuemei N, Gao G, Liu X, Fang Z. "Decoupled sliding mode control for a novel 3-DOF parallel manipulator with actuation redundancy", International journal of advanced robotic systems. 2015, 22;12(5):64. [DOI:10.5772/60508]
23. [23] Mahmoodabadi MJ, Yazdi SM, Talebipour M. "Optimal self-tuning decoupled sliding mode control for a class of nonlinear systems", International Journal of Intelligent Engineering Informatics. 2019, 7(6):529-44. [DOI:10.1504/IJIEI.2019.104561]
24. [24] Ata B, Coban R. "Decoupled adaptive backstepping sliding mode control of underactuated mechanical systems", Journal of Control Engineering and Applied Informatics. 2022, 23;24(1):45-56.
25. [25] Zaare S, Soltanpour MR. "Adaptive fuzzy global coupled nonsingular fast terminal sliding mode control of n-rigid-link elastic-joint robot manipulators in presence of uncertainties", Mechanical Systems and Signal Processing. 2022, 15:163:108165. [DOI:10.1016/j.ymssp.2021.108165]
26. [26] Nezhad, A. H., Noiey, A. R., Soltanpour, M. R., & Veysi, M. "A new fuzzy decoupled sliding mode control of flexible joint robotic manipulators based on the finite‐time observer in the presence of chaos with experimental validation", IET Control Theory & Applications, 2024, 18(4), 422-441. [DOI:10.1049/cth2.12581]
27. [27] Zaare S, Soltanpour MR, Moattari M. "Adaptive sliding mode control of n flexible-joint robot manipulators in the presence of structured and unstructured uncertainties", Multibody System Dynamics. 2019 ,47(4):397-434. [DOI:10.1007/s11044-019-09693-1]
28. [28] Molaie M, Jafari S, Sprott JC, Golpayegani SM. "Simple chaotic flows with one stable equilibrium", International Journal of Bifurcation and Chaos. 2013, 23(11):1350188. [DOI:10.1142/S0218127413501885]
29. [29] Khalil HK. "Control of nonlinear systems", Prentice Hall, New York, NY; 2002.
30. [30] Spong MW, Hutchinson S, Vidyasagar M. " Robot modeling and control", John Wiley & Sons; 2020.
31. [31] Wang X, Liu J, Cai KY. "Tracking control for a velocity-sensorless VTOL aircraft with delayed outputs", Automatica. 2009, 1;45(12):2876-82. [DOI:10.1016/j.automatica.2009.09.003]
32. [32] Wang, Hai, L. Shi, Zhihong Man, Jinchuan Zheng, S. Li, Ming Yu, C. Jiang, Huifang Kong, and Zhenwei Cao. "Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer", IEEE Transactions on Industrial Electronics 65, no. 9. 2018, 7160-7172. [DOI:10.1109/TIE.2018.2795591]
33. [33] Chen, S., Liu, W., & Huang, H. "Nonsingular fast terminal sliding mode tracking control for a class of uncertain nonlinear systems", Journal of Control Science and Engineering, 2019, 8146901. [DOI:10.1155/2019/8146901]
34. [34] Junejo, A. K., Xu, W., Hashmani, A. A., El-Sousy, F. F., Habib, H. U. R., Tang, Y., ... & Ismail, M. M. "Novel fast terminal reaching law based composite speed control of PMSM drive system", IEEE Access, 2022, 10, 82202-82213. [DOI:10.1109/ACCESS.2022.3196785]
35. [35] Lui J, Wang X. "Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and MATLAB Simulation", TSINCHUA university Press. 2012, 147-148.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb