1. [1] Bernoulli, J. (1697). Jacobi Bernoulli solutio problematum fraternorum. Acta Eruditorum, Leipzig, 214, 1697.
2. [2] Galilei, G. (1914). Dialogues concerning two new sciences. Dover.
3. [3] Brunt, B. (2004). The Calculus of Variations. Springer-Verlag, New York.
4. [4] Bell, E. T. (1986). Men of mathematics. Simon and Schuster, New York.
5. [5] Chandrasekhar, S. (2003). Newton's Principia for the common reader. Oxford University Press.
6. [6] Euler, L. (1744). The Method of Finding Plane Curves that Show Some Property of Maximum or Minimum, Lausanne and Geneva.
7. [7] Goldstine, H. H. (2012). A History of the Calculus of Variations from the 17th through the 19th Century (Vol. 5). Springer Science & Business Media.
8. [8] Nishiyama, Y. (2013). The brachistochrone curve: The problem of quickest descent. International Journal of Pure and Applied Mathematics, 82(3), 409-419.
9. [9] Brookfield, G. (2010). Yet another elementary solution of the brachistochrone problem. Mathematics Magazine, 83(1), 59-63. [
DOI:10.4169/002557010X480017]
10. [10] Lemak, S. S., & Belousova, M. D. (2021). The brachistochrone problem with constraints on the curvature of the trajectory. IFAC-PapersOnLine, 54(13), 437-442. [
DOI:10.1016/j.ifacol.2021.10.487]
11. [11] Kushner, H. J., Dupuis, P. (1992). Numerical methods for stochastic control problems in continuous time, Springer, New York. [
DOI:10.1007/978-1-4684-0441-8]
12. [12] Kafash, B., Nikoeenezhad, Z., & Delavarkhalafi, A. (2016). An iterative algorithm for solving stochastic optimal control via the Markov chain approximation. Journal of Control, 10(2), 35-43. (In Persian)
13. [13] Ciarlet, P. G., & Mardare, C. (2022). On the Brachistochrone Problem. Communications in Mathematical Analysis and Applications, 1)1(, 213-240. [
DOI:10.4208/cmaa.2021-0005]
14. [14] Abdul-Hafidh, E. H. (2022). A new approach to solve the Brachistochrone problem by constructing a lattice unit cell. Heliyon, 8(12). [
DOI:10.1016/j.heliyon.2022.e11994]
15. [15] Benham, G. P., Cohen, C., Brunet, E., & Clanet, C. (2020). Brachistochrone on a velodrome. Proceedings of the Royal Society A, 476 (2238), 20200153. [
DOI:10.1098/rspa.2020.0153]
16. [16] Sun, P., Liu, Y., & Huang, X. (2022). Exploring the brachistochrone (shortest-time) path in fire spread. Scientific Reports, 12(1), 13600. [
DOI:10.1038/s41598-022-17321-w]
17. [17] De Sousa, L. G. B., & Lima, L. P. F. (2024). An educational product based on the brachistochrone problem. International Journal of Professional Business Review: Int. J. Prof. Bus. Rev., 9(5), 2. [
DOI:10.26668/businessreview/2024.v9i5.4436]
18. [18] Martin, J. (2010). The Helen of geometry. The College Mathematics Journal, 41(1), 17-28. [
DOI:10.4169/074683410X475083]
19. [19] Thomas, G. B., Weir, M. D., Hass, J., Giordano, F. R., & Korkmaz, R. (2010). Thomas' calculus (Vol. 12). Boston: Pearson.
20. [20] Mallik, A. K. (2008). Optimization problems in elementary geometry. Resonance, 13, 561-582. [
DOI:10.1007/s12045-008-0062-5]
21. [21] Russak, I. B. (2002). Calculus of variations MA 4311 lecture notes.
22. [22] Fleming, W. H., & Rishel, R. W. (2012). Deterministic and stochastic optimal control (Vol. 1). Springer Science & Business Media.
23. [23] Kafash, B. (2024). Historical Approaches and Modern Methods in Analyzing the Brachistochrone Problem. Mathematics and Society, doi: 10.22108/msci.2024.142284.1678 (In Persian).