دوره 17، شماره 3 - ( مجله کنترل، جلد 17، شماره 3، پاییز 1402 )                   جلد 17 شماره 3,1402 صفحات 65-55 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karkhaneh M, Ozgoli S. A Note on the Practical Efficiency of Using Wavelet Transform for Short-term Load Forecasting in Smart Grids. JoC 2023; 17 (3) :55-65
URL: http://joc.kntu.ac.ir/article-1-1035-fa.html
کارخانه محمد، ازگلی سجاد. یادداشتی در مورد کارایی عملی استفاده از تبدیل موجک در زمینه ی پیش بینی بار کوتاه مدت در شبکه های هوشمند. مجله کنترل. 1402; 17 (3) :55-65

URL: http://joc.kntu.ac.ir/article-1-1035-fa.html


1- گروه مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران
2- گروه مهندسی برق و کامپیوتر، دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران
چکیده:   (1237 مشاهده)
در عصر شبکه هوشمند، پیش‌بینی بار الکتریکی جزء بسیار مهمی از یک سیستم قدرت امن، قابل اعتماد و اقتصادی محسوب می-گردد. به همین علت بسیاری از محققان زمان زیادی را صرف بررسی روش‌های مختلف برای بهبود دقت پیش‌بینی بار کرده‌اند. در این خصوص یکی از روش‌های پرکاربرد در سال های اخیر، تجزیه سری‌های بار به اجزای فرکانس بالا و فرکانس پایین با استفاده از تبدیل موجک می باشد که طبق گزارش‌ها نتایج چشمگیری را در برخی مقالات نشان داده است. در این مقاله با انجام چندین شبیه‌سازی نشان داده شده است که علیرغم برخی از مزایای تبدیل موجک، این روش می تواند نتایج غیرواقعی را به دلیل مشکل اعوجاج مرزی ایجاد کند. در واقع این مقاله کارایی عملی تبدیل موجک در زمینه ی پیش‌بینی بار را از دیدگاه اپراتور سیستمی که هر روز در حال پیش‌بینی پروفیل بار الکتریکی روز بعد است، بررسی می نماید. در این راستا از مدل‌های رگرسیون خطی چندگانه (MLR) و شبکه عصبی مصنوعی (ANN) به همراه تبدیل موجک برای انجام آزمایش‌هایی بر روی مجموعه داده بار الکتریکی شهر نیویورک استفاده شده است.
متن کامل [PDF 575 kb]   (315 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/2/5 | پذیرش: 1401/5/27 | انتشار: 1402/9/10

فهرست منابع
1. [1] D. Bunn and E. D. Farmer, "Comparative Models for Electrical Load Forecasting.," Comp Model. Electr Load Forecast, 1985.
2. [2] W. C. Hong and G. F. Fan, "Hybrid empirical mode decomposition with support vector regression model for short term load forecasting," Energies, vol. 12, no. 6, p. 1093, 2019. [DOI:10.3390/en12061093]
3. [3] M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi, F. S. Oueslati, and H. Abu-Rub, "A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting," Energy, vol. 214, p. 118874, 2021. [DOI:10.1016/j.energy.2020.118874]
4. [4] G. Cerne, D. Dovzan, and I. Skrjanc, "Short-Term Load Forecasting by Separating Daily Profiles and Using a Single Fuzzy Model Across the Entire Domain," IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7406-7415, 2018. [DOI:10.1109/TIE.2018.2795555]
5. [5] J. Kim, S. Cho, K. Ko, and R. R. Rao, "Short-term Electric Load Prediction Using Multiple Linear Regression Method," in 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2018, 2018, pp. 1-6. [DOI:10.1109/SmartGridComm.2018.8587489]
6. [6] C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, "A review on time series forecasting techniques for building energy consumption," Renew. Sustain. Energy Rev., vol. 74, pp. 902-924, 2017. [DOI:10.1016/j.rser.2017.02.085]
7. [7] T. Hong and S. Fan, "Probabilistic electric load forecasting: A tutorial review," Int. J. Forecast., vol. 32, no. 3, pp. 914-938, 2016. [DOI:10.1016/j.ijforecast.2015.11.011]
8. [8] F. Y. Xu, X. Cun, M. Yan, H. Yuan, Y. Wang, and L. L. Lai, "Power Market Load Forecasting on Neural Network With Beneficial Correlated Regularization," IEEE Trans. Ind. Informatics, vol. 14, no. 11, pp. 5050-5059, 2018. [DOI:10.1109/TII.2017.2789297]
9. [9] T. Hong, "Energy forecasting: Past, present, and future," Foresight Int. J. Appl. Forecast., no. 32, pp. 43-48, 2014.
10. [10] W. Huang, D. Zhang, Z. Song, H. Wang, and H. Liu, "Short-term load forecasting based on similar day approach and intelligent algorithm using analytic hierarchy process," in Proceedings of 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2019, 2019, pp. 2507-2512. [DOI:10.1109/ITNEC.2019.8729371]
11. [11] R. J. Park, K. Bin Song, and B. S. Kwon, "Short-term load forecasting algorithm using a similar day selection method based on reinforcement learning," Energies, vol. 13, no. 10, p. 2640, 2020. [DOI:10.3390/en13102640]
12. [12] J. Xie and T. Hong, "Variable selection methods for probabilistic load forecasting: Empirical evidence from seven states of the United States," IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6039-6046, 2018. [DOI:10.1109/TSG.2017.2702751]
13. [13] J. Li et al., "A Novel Hybrid Short-Term Load Forecasting Method of Smart Grid Using MLR and LSTM Neural Network," IEEE Trans. Ind. Informatics, vol. 17, no. 4, pp. 2443-2452, 2021. [DOI:10.1109/TII.2020.3000184]
14. [14] F. He, J. Zhou, Z. kai Feng, G. Liu, and Y. Yang, "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Appl. Energy, vol. 237, pp. 103-116, 2019. [DOI:10.1016/j.apenergy.2019.01.055]
15. [15] M. Rafiei, T. Niknam, J. Aghaei, M. Shafie-Khah, and J. P. S. Catalao, "Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine," IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6961-6971, 2018. [DOI:10.1109/TSG.2018.2807845]
16. [16] A. J. da Rocha Reis and A. P. Alves da Silva, "Feature extraction via multiresolution analysis for short-term load forecasting," IEEE Trans. Power Syst., vol. 20, no. 1, pp. 189-198, 2005. [DOI:10.1109/TPWRS.2004.840380]
17. [17] A. Deihimi, O. Orang, and H. Showkati, "Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction," Energy, vol. 57, pp. 382-401, 2013. [DOI:10.1016/j.energy.2013.06.007]
18. [18] M. Ghofrani, M. Ghayekhloo, A. Arabali, and A. Ghayekhloo, "A hybrid short-term load forecasting with a new input selection framework," Energy, vol. 81, pp. 777-786, 2015. [DOI:10.1016/j.energy.2015.01.028]
19. [19] T. Zheng, A. A. Girgis, and E. B. Makram, "Hybrid wavelet-Kalman filter method for load forecasting," Electr. Power Syst. Res., vol. 54, no. 1, pp. 11-17, 2000. [DOI:10.1016/S0378-7796(99)00063-2]
20. [20] S. Bahrami, R. A. Hooshmand, and M. Parastegari, "Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm," Energy, vol. 72, pp. 434-442, 2014. [DOI:10.1016/j.energy.2014.05.065]
21. [21] H. Aprillia, H. T. Yang, and C. M. Huang, "Optimal decomposition and reconstruction of discrete wavelet transformation for short-term load forecasting," Energies, vol. 12, no. 24, p. 4654, 2019. [DOI:10.3390/en12244654]
22. [22] B. L. Zhang and Z. Y. Dong, "An adaptive neural-wavelet model for short term load forecasting," Electr. Power Syst. Res., vol. 59, no. 2, pp. 121-129, 2001. [DOI:10.1016/S0378-7796(01)00138-9]
23. [23] N. Amjady and F. Keynia, "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, vol. 34, no. 1, pp. 46-57, 2009. [DOI:10.1016/j.energy.2008.09.020]
24. [24] Y. Chen et al., "Short-term load forecasting: Similar day-based wavelet neural networks," IEEE Trans. Power Syst., vol. 25, no. 1, pp. 322-330, 2009. [DOI:10.1109/TPWRS.2009.2030426]
25. [25] A. S. Pandey, D. Singh, and S. K. Sinha, "Intelligent hybrid wavelet models for short-term load forecasting," IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1266-1273, 2010. [DOI:10.1109/TPWRS.2010.2042471]
26. [26] Z. Liu, W. Li, and W. Sun, "A novel method of short-term load forecasting based on multiwavelet transform and multiple neural networks," Neural Comput. Appl., vol. 22, no. 2, pp. 271-277, 2013. [DOI:10.1007/s00521-011-0715-2]
27. [27] M. Alipour, J. Aghaei, M. Norouzi, T. Niknam, S. Hashemi, and M. Lehtonen, "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, vol. 205, p. 118106, 2020. [DOI:10.1016/j.energy.2020.118106]
28. [28] S. G. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," Fundam. Pap. Wavelet Theory, pp. 494-513, 2009. [DOI:10.1515/9781400827268.494]
29. [29] C. Guan, P. B. Luh, L. D. Michel, Y. Wang, and P. B. Friedland, "Very short-term load forecasting: Wavelet neural networks with data pre-filtering," IEEE Trans. Power Syst., vol. 28, no. 1, pp. 30-41, 2013. [DOI:10.1109/TPWRS.2012.2197639]
30. [30] T. Hong, P. Pinson, and S. Fan, "Global energy forecasting competition 2012," International Journal of Forecasting, vol. 30, no. 2. Elsevier, pp. 357-363, 2014. [DOI:10.1016/j.ijforecast.2013.07.001]
31. [31] N. Zhang, Z. Li, X. Zou, and S. M. Quiring, "Comparison of three short-term load forecast models in Southern California," Energy, vol. 189, p. 116358, 2019. [DOI:10.1016/j.energy.2019.116358]
32. [32] C. E. Kontokosta and C. Tull, "A data-driven predictive model of city-scale energy use in buildings," Appl. Energy, vol. 197, pp. 303-317, 2017. [DOI:10.1016/j.apenergy.2017.04.005]
33. [33] H. S. Hippert, C. E. Pedreira, and R. C. Souza, "Neural networks for short-term load forecasting: A review and evaluation," IEEE Trans. Power Syst., vol. 16, no. 1, pp. 44-55, 2001. [DOI:10.1109/59.910780]
34. [34] M. Talaat, M. A. Farahat, N. Mansour, and A. Y. Hatata, "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, vol. 196, p. 117087, 2020. [DOI:10.1016/j.energy.2020.117087]
35. [35] R. Houimli, M. Zmami, and O. Ben-Salha, "Short-term electric load forecasting in Tunisia using artificial neural networks," Energy Syst., vol. 11, no. 2, pp. 357-375, 2020. [DOI:10.1007/s12667-019-00324-4]
36. [36] M. Misiti, "Wavelet Toolbox," MathWorks Inc., Natick, MA, vol. 15, p. 21, 1996.t
37. [37] NYISO, "New York Independent System Operator," 2020. http://www.nyiso.com (accessed Sep. 03, 2020).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb