دوره 18، شماره 1 - ( مجله کنترل، جلد 18، شماره 1، بهار 1403 )                   جلد 18 شماره 1,1403 صفحات 79-69 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saberi M M, Azimi M, Shahnavaz M M, Ebadollahi S, Najafi H, Sobati M A. Error Mitigation in UWB-Based Positioning Systems Using an Adapted Tree Approach. JoC 2024; 18 (1) :69-79
URL: http://joc.kntu.ac.ir/article-1-1047-fa.html
صابری محمد مهدی، عظیمی محمد، شهنواز محمد مهدی، عباداللهی سعید، نجفی حمیدرضا، ثباتی محمد امین. کاهش خطا در سیستم های موقعیت یابی مبتنی بر UWB با استفاده از رویکرد درختی سازگار. مجله کنترل. 1403; 18 (1) :69-79

URL: http://joc.kntu.ac.ir/article-1-1047-fa.html


1- دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران
2- شرکت مهندسی فرآیند سبز، تهران، ایران
3- دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران
چکیده:   (327 مشاهده)
این مقاله به چالش کاهش خطاهای موقعیت یابی در شبکه های باند فوق عریض (UWB) می پردازد. ما یک رویکرد درختی سازگار را پیشنهاد می‌کنیم که اثرات خطا را جبران می‌کند و منجر به بهبود دقت در محیط‌های Line-of-Sight (LOS) و Non-Line-of-Sight (NLOS) می‌شود. خطاهای محدوده به دو نوع، خطاهای شرایط LOS و NLOS طبقه بندی می شوند، و رویکرد درخت سازگار با تقسیم مطالعه بر اساس وجود این شرایط شروع می شود. مقادیر خطای دامنه در فواصل مختلف مطالعه شده و فواصل زمانی بر اساس معیار خطای انحراف استاندارد شناسایی می شوند. نتایج موقعیت‌یابی ارائه و تجزیه و تحلیل می‌شوند و نشان می‌دهند که استفاده از درخت سازگار منجر به کاهش خطای متوسط ​​در حدود 53.4 سانتی‌متر در شرایط LOS و حدود 133 سانتی‌متر در شرایط NLOS می‌شود. نتایج نشان‌دهنده اثربخشی رویکرد درختی سازگار در کاهش خطا برای شرایط LOS و NLOS است. علاوه بر این، روش تخمین EKF دقیق‌ترین تخمین‌گر است. در نهایت، رویکرد پیشنهادی بر روی یک برچسب متحرک اعمال می‌شود و دقتی در حدود 20.8 سانتی‌متر برای LOS و 24.1 سانتی‌متر برای شرایط NLOS از طریق روش EKF به دست می‌آید.
متن کامل [PDF 1547 kb]   (150 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/3/27 | پذیرش: 1403/3/6 | انتشار: 1403/3/30

فهرست منابع
1. [1] A. Sharif et al., "Compact base station antenna based on image theory for UWB/5G RTLS embraced smart parking of driverless cars," IEEE Access, vol. 7, pp. 180898-180909, 2019. [DOI:10.1109/ACCESS.2019.2959130]
2. [2] A. R. J. Ruiz and F. S. Granja, "Comparing ubisense, bespoon, and decawave uwb location systems: Indoor performance analysis," IEEE Transactions on instrumentation and Measurement, vol. 66, no. 8, pp. 2106-2117, 2017. [DOI:10.1109/TIM.2017.2681398]
3. [3] F. Mazhar, M. G. Khan, and B. Sällberg, "Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementations," Wireless Personal Communications, vol. 97, no. 3, pp. 4467-4491, 2017, doi: 10.1007/s11277-017-4734-x. [DOI:10.1007/s11277-017-4734-x]
4. [4] H. J. Kim, Y. Xie, H. Yang, C. Lee, and T. L. Song, "An Efficient Indoor Target Tracking Algorithm Using TDOA Measurements With Applications to Ultra-Wideband Systems," IEEE Access, vol. 7, pp. 91435-91445, 2019. [DOI:10.1109/ACCESS.2019.2927005]
5. [5] C. Zhou, J. Yuan, H. Liu, and J. Qiu, "Bluetooth indoor positioning based on RSSI and Kalman filter," Wireless Personal Communications, vol. 96, no. 3, pp. 4115-4130, 2017. [DOI:10.1007/s11277-017-4371-4]
6. [6] C. Suwatthikul, W. Chantaweesomboon, S. Manatrinon, K. Athikulwongse, and K. Kaemarungsi, "Implication of anchor placement on performance of UWB real-time locating system," in 2017 8th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), 2017: IEEE, pp. 1-6. [DOI:10.1109/ICTEmSys.2017.7958760]
7. [7] S. Bottigliero, D. Milanesio, M. Saccani, and R. Maggiora, "A Low-Cost Indoor Real-Time Locating System Based on TDOA Estimation of UWB Pulse Sequences," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-11, 2021. [DOI:10.1109/TIM.2021.3069486]
8. [8] D. Feng, C. Wang, C. He, Y. Zhuang, and X.-G. Xia, "Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation," IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3133-3146, 2020, doi: 10.1109/jiot.2020.2965115. [DOI:10.1109/JIOT.2020.2965115]
9. [9] X. Zhu, J. Yi, J. Cheng, and L. He, "Adapted error map based mobile robot UWB indoor positioning," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 9, pp. 6336-6350, 2020. [DOI:10.1109/TIM.2020.2967114]
10. [10] C. Lian Sang, M. Adams, T. Hörmann, M. Hesse, M. Porrmann, and U. Rückert, "Numerical and experimental evaluation of error estimation for two-way ranging methods," Sensors, vol. 19, no. 3, p. 616, 2019. [DOI:10.3390/s19030616]
11. [11] F. Despaux, A. Van den Bossche, K. Jaffrès-Runser, and T. Val, "N-TWR: An accurate time-of-flight-based N-ary ranging protocol for Ultra-Wide band," Ad Hoc Networks, vol. 79, pp. 1-19, 2018. [DOI:10.1016/j.adhoc.2018.05.016]
12. [12] J. Khodjaev, Y. Park, and A. Saeed Malik, "Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments," annals of telecommunications-annales des télécommunications, vol. 65, no. 5, pp. 301-311, 2010. [DOI:10.1007/s12243-009-0124-z]
13. [13] X. Yang, J. Wang, D. Song, B. Feng, and H. Ye, "A Novel NLOS Error Compensation Method Based IMU for UWB Indoor Positioning System," IEEE Sensors Journal, vol. 21, no. 9, pp. 11203-11212, 2021, doi: 10.1109/jsen.2021.3061468. [DOI:10.1109/JSEN.2021.3061468]
14. [14] D.-H. Kim, A. Farhad, and J.-Y. Pyun, "UWB positioning system based on LSTM classification with mitigated NLOS effects," IEEE Internet of Things Journal, 2022. [DOI:10.1109/JIOT.2022.3209735]
15. [15] Y. Huang, S. Mazuelas, F. Ge, and Y. Shen, "Indoor Localization System with NLOS Mitigation Based on Self-Training," IEEE Transactions on Mobile Computing, 2022. [DOI:10.1109/TMC.2022.3148338]
16. [16] L. Barbieri, M. Brambilla, A. Trabattoni, S. Mervic, and M. Nicoli, "UWB localization in a smart factory: augmentation methods and experimental assessment," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-18, 2021. [DOI:10.1109/TIM.2021.3074403]
17. [17] B. Silva and G. P. Hancke, "Ranging error mitigation for through-the-wall non-line-of-sight conditions," IEEE Transactions on Industrial Informatics, vol. 16, no. 11, pp. 6903-6911, 2020. [DOI:10.1109/TII.2020.2969886]
18. [18] B. Cao, S. Wang, S. Ge, and W. Liu, "Improving the Positioning Accuracy of UWB System for Complicated Underground NLOS Environments," IEEE Systems Journal, 2021. [DOI:10.1109/JSYST.2021.3083103]
19. [19] S. Djosic, I. Stojanovic, M. Jovanovic, and G. L. Djordjevic, "Multi-algorithm UWB-based localization method for mixed LOS/NLOS environments," Computer Communications, vol. 181, pp. 365-373, 2022. [DOI:10.1016/j.comcom.2021.10.031]
20. [20] V. Barral, C. J. Escudero, J. A. García-Naya, and R. Maneiro-Catoira, "NLOS identification and mitigation using low-cost UWB devices," Sensors, vol. 19, no. 16, p. 3464, 2019. [DOI:10.3390/s19163464]
21. [21] T. Wang, K. Hu, Z. Li, K. Lin, J. Wang, and Y. Shen, "A semi-supervised learning approach for UWB ranging error mitigation," IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 688-691, 2020. [DOI:10.1109/LWC.2020.3046531]
22. [22] M. Hassan, N. Babaei, S. Ebadollahi, and B. Gill, "Database Optimization of Fingerprint-Based Indoor Positioning System Using Genetic Algorithm," in 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2021: IEEE, pp. 0052-0057. [DOI:10.1109/IEMCON53756.2021.9623244]
23. [23] J. Wei, H. Wang, S. Su, Y. Tang, X. Guo, and X. Sun, "NLOS identification using parallel deep learning model and time-frequency information in UWB-based positioning system," Measurement, vol. 195, p. 111191, 2022. [DOI:10.1016/j.measurement.2022.111191]
24. [24] M. Malajner, D. Gleich, and P. Planinsic, "Soil type characterization for moisture estimation using machine learning and UWB-Time of Flight measurements," Measurement, vol. 146, pp. 537-543, 2019. [DOI:10.1016/j.measurement.2019.06.042]
25. [25] S. Angarano, V. Mazzia, F. Salvetti, G. Fantin, and M. Chiaberge, "Robust ultra-wideband range error mitigation with deep learning at the edge," Engineering Applications of Artificial Intelligence, vol. 102, p. 104278, 2021. [DOI:10.1016/j.engappai.2021.104278]
26. [26] S. Zheng et al., "Multi-robot relative positioning and orientation system based on UWB range and graph optimization," Measurement, vol. 195, p. 111068, 2022. [DOI:10.1016/j.measurement.2022.111068]
27. [27] J. Yan, C. C. Tiberius, G. J. Janssen, P. J. Teunissen, and G. Bellusci, "Review of range-based positioning algorithms," IEEE Aerospace and Electronic Systems Magazine, vol. 28, no. 8, pp. 2-27, 2013. [DOI:10.1109/MAES.2013.6575420]
28. [28] A. Yassin et al., "Recent advances in indoor localization: A survey on theoretical approaches and applications," IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1327-1346, 2016. [DOI:10.1109/COMST.2016.2632427]
29. [29] F. Deng, H.-L. Yang, and L.-J. Wang, "Adaptive unscented Kalman filter based estimation and filtering for dynamic positioning with model uncertainties," International Journal of Control, Automation and Systems, vol. 17, no. 3, pp. 667-678, 2019. [DOI:10.1007/s12555-018-9503-4]
30. [30] J. Yan, "Algorithms for indoor positioning systems using ultra-wideband signals," 2010.
31. [31] I. Domuta and T. P. Palade, "Two-way ranging algorithms for clock error compensation," IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 8237-8250, 2021. [DOI:10.1109/TVT.2021.3096667]
32. [32] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen, "Stochastic stability of the discrete-time extended Kalman filter," IEEE Transactions on Automatic control, vol. 44, no. 4, pp. 714-728, 1999. [DOI:10.1109/9.754809]
33. [33] J. Cano, G. Pagès, E. Chaumette, and J. LeNy, "Clock and power-induced bias correction for UWB time-of-flight measurements," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2431-2438, 2022. [DOI:10.1109/LRA.2022.3143202]
34. [34] Y. Wang and X. Li, "The IMU/UWB Fusion Positioning Algorithm Based on a Particle Filter," ISPRS International Journal of Geo-Information, vol. 6, no. 8, 2017, doi: 10.3390/ijgi6080235. [DOI:10.3390/ijgi6080235]
35. [35] S. Sung, H. Kim, and J.-I. Jung, "Accurate Indoor Positioning for UWB-Based Personal Devices Using Deep Learning," IEEE Access, vol. 11, pp. 20095-20113, 2023. [DOI:10.1109/ACCESS.2023.3250180]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb