1. [1] A. Sharif et al., "Compact base station antenna based on image theory for UWB/5G RTLS embraced smart parking of driverless cars," IEEE Access, vol. 7, pp. 180898-180909, 2019. [
DOI:10.1109/ACCESS.2019.2959130]
2. [2] A. R. J. Ruiz and F. S. Granja, "Comparing ubisense, bespoon, and decawave uwb location systems: Indoor performance analysis," IEEE Transactions on instrumentation and Measurement, vol. 66, no. 8, pp. 2106-2117, 2017. [
DOI:10.1109/TIM.2017.2681398]
3. [3] F. Mazhar, M. G. Khan, and B. Sällberg, "Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementations," Wireless Personal Communications, vol. 97, no. 3, pp. 4467-4491, 2017, doi: 10.1007/s11277-017-4734-x. [
DOI:10.1007/s11277-017-4734-x]
4. [4] H. J. Kim, Y. Xie, H. Yang, C. Lee, and T. L. Song, "An Efficient Indoor Target Tracking Algorithm Using TDOA Measurements With Applications to Ultra-Wideband Systems," IEEE Access, vol. 7, pp. 91435-91445, 2019. [
DOI:10.1109/ACCESS.2019.2927005]
5. [5] C. Zhou, J. Yuan, H. Liu, and J. Qiu, "Bluetooth indoor positioning based on RSSI and Kalman filter," Wireless Personal Communications, vol. 96, no. 3, pp. 4115-4130, 2017. [
DOI:10.1007/s11277-017-4371-4]
6. [6] C. Suwatthikul, W. Chantaweesomboon, S. Manatrinon, K. Athikulwongse, and K. Kaemarungsi, "Implication of anchor placement on performance of UWB real-time locating system," in 2017 8th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), 2017: IEEE, pp. 1-6. [
DOI:10.1109/ICTEmSys.2017.7958760]
7. [7] S. Bottigliero, D. Milanesio, M. Saccani, and R. Maggiora, "A Low-Cost Indoor Real-Time Locating System Based on TDOA Estimation of UWB Pulse Sequences," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-11, 2021. [
DOI:10.1109/TIM.2021.3069486]
8. [8] D. Feng, C. Wang, C. He, Y. Zhuang, and X.-G. Xia, "Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation," IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3133-3146, 2020, doi: 10.1109/jiot.2020.2965115. [
DOI:10.1109/JIOT.2020.2965115]
9. [9] X. Zhu, J. Yi, J. Cheng, and L. He, "Adapted error map based mobile robot UWB indoor positioning," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 9, pp. 6336-6350, 2020. [
DOI:10.1109/TIM.2020.2967114]
10. [10] C. Lian Sang, M. Adams, T. Hörmann, M. Hesse, M. Porrmann, and U. Rückert, "Numerical and experimental evaluation of error estimation for two-way ranging methods," Sensors, vol. 19, no. 3, p. 616, 2019. [
DOI:10.3390/s19030616]
11. [11] F. Despaux, A. Van den Bossche, K. Jaffrès-Runser, and T. Val, "N-TWR: An accurate time-of-flight-based N-ary ranging protocol for Ultra-Wide band," Ad Hoc Networks, vol. 79, pp. 1-19, 2018. [
DOI:10.1016/j.adhoc.2018.05.016]
12. [12] J. Khodjaev, Y. Park, and A. Saeed Malik, "Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments," annals of telecommunications-annales des télécommunications, vol. 65, no. 5, pp. 301-311, 2010. [
DOI:10.1007/s12243-009-0124-z]
13. [13] X. Yang, J. Wang, D. Song, B. Feng, and H. Ye, "A Novel NLOS Error Compensation Method Based IMU for UWB Indoor Positioning System," IEEE Sensors Journal, vol. 21, no. 9, pp. 11203-11212, 2021, doi: 10.1109/jsen.2021.3061468. [
DOI:10.1109/JSEN.2021.3061468]
14. [14] D.-H. Kim, A. Farhad, and J.-Y. Pyun, "UWB positioning system based on LSTM classification with mitigated NLOS effects," IEEE Internet of Things Journal, 2022. [
DOI:10.1109/JIOT.2022.3209735]
15. [15] Y. Huang, S. Mazuelas, F. Ge, and Y. Shen, "Indoor Localization System with NLOS Mitigation Based on Self-Training," IEEE Transactions on Mobile Computing, 2022. [
DOI:10.1109/TMC.2022.3148338]
16. [16] L. Barbieri, M. Brambilla, A. Trabattoni, S. Mervic, and M. Nicoli, "UWB localization in a smart factory: augmentation methods and experimental assessment," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-18, 2021. [
DOI:10.1109/TIM.2021.3074403]
17. [17] B. Silva and G. P. Hancke, "Ranging error mitigation for through-the-wall non-line-of-sight conditions," IEEE Transactions on Industrial Informatics, vol. 16, no. 11, pp. 6903-6911, 2020. [
DOI:10.1109/TII.2020.2969886]
18. [18] B. Cao, S. Wang, S. Ge, and W. Liu, "Improving the Positioning Accuracy of UWB System for Complicated Underground NLOS Environments," IEEE Systems Journal, 2021. [
DOI:10.1109/JSYST.2021.3083103]
19. [19] S. Djosic, I. Stojanovic, M. Jovanovic, and G. L. Djordjevic, "Multi-algorithm UWB-based localization method for mixed LOS/NLOS environments," Computer Communications, vol. 181, pp. 365-373, 2022. [
DOI:10.1016/j.comcom.2021.10.031]
20. [20] V. Barral, C. J. Escudero, J. A. García-Naya, and R. Maneiro-Catoira, "NLOS identification and mitigation using low-cost UWB devices," Sensors, vol. 19, no. 16, p. 3464, 2019. [
DOI:10.3390/s19163464]
21. [21] T. Wang, K. Hu, Z. Li, K. Lin, J. Wang, and Y. Shen, "A semi-supervised learning approach for UWB ranging error mitigation," IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 688-691, 2020. [
DOI:10.1109/LWC.2020.3046531]
22. [22] M. Hassan, N. Babaei, S. Ebadollahi, and B. Gill, "Database Optimization of Fingerprint-Based Indoor Positioning System Using Genetic Algorithm," in 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2021: IEEE, pp. 0052-0057. [
DOI:10.1109/IEMCON53756.2021.9623244]
23. [23] J. Wei, H. Wang, S. Su, Y. Tang, X. Guo, and X. Sun, "NLOS identification using parallel deep learning model and time-frequency information in UWB-based positioning system," Measurement, vol. 195, p. 111191, 2022. [
DOI:10.1016/j.measurement.2022.111191]
24. [24] M. Malajner, D. Gleich, and P. Planinsic, "Soil type characterization for moisture estimation using machine learning and UWB-Time of Flight measurements," Measurement, vol. 146, pp. 537-543, 2019. [
DOI:10.1016/j.measurement.2019.06.042]
25. [25] S. Angarano, V. Mazzia, F. Salvetti, G. Fantin, and M. Chiaberge, "Robust ultra-wideband range error mitigation with deep learning at the edge," Engineering Applications of Artificial Intelligence, vol. 102, p. 104278, 2021. [
DOI:10.1016/j.engappai.2021.104278]
26. [26] S. Zheng et al., "Multi-robot relative positioning and orientation system based on UWB range and graph optimization," Measurement, vol. 195, p. 111068, 2022. [
DOI:10.1016/j.measurement.2022.111068]
27. [27] J. Yan, C. C. Tiberius, G. J. Janssen, P. J. Teunissen, and G. Bellusci, "Review of range-based positioning algorithms," IEEE Aerospace and Electronic Systems Magazine, vol. 28, no. 8, pp. 2-27, 2013. [
DOI:10.1109/MAES.2013.6575420]
28. [28] A. Yassin et al., "Recent advances in indoor localization: A survey on theoretical approaches and applications," IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1327-1346, 2016. [
DOI:10.1109/COMST.2016.2632427]
29. [29] F. Deng, H.-L. Yang, and L.-J. Wang, "Adaptive unscented Kalman filter based estimation and filtering for dynamic positioning with model uncertainties," International Journal of Control, Automation and Systems, vol. 17, no. 3, pp. 667-678, 2019. [
DOI:10.1007/s12555-018-9503-4]
30. [30] J. Yan, "Algorithms for indoor positioning systems using ultra-wideband signals," 2010.
31. [31] I. Domuta and T. P. Palade, "Two-way ranging algorithms for clock error compensation," IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 8237-8250, 2021. [
DOI:10.1109/TVT.2021.3096667]
32. [32] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen, "Stochastic stability of the discrete-time extended Kalman filter," IEEE Transactions on Automatic control, vol. 44, no. 4, pp. 714-728, 1999. [
DOI:10.1109/9.754809]
33. [33] J. Cano, G. Pagès, E. Chaumette, and J. LeNy, "Clock and power-induced bias correction for UWB time-of-flight measurements," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2431-2438, 2022. [
DOI:10.1109/LRA.2022.3143202]
34. [34] Y. Wang and X. Li, "The IMU/UWB Fusion Positioning Algorithm Based on a Particle Filter," ISPRS International Journal of Geo-Information, vol. 6, no. 8, 2017, doi: 10.3390/ijgi6080235. [
DOI:10.3390/ijgi6080235]
35. [35] S. Sung, H. Kim, and J.-I. Jung, "Accurate Indoor Positioning for UWB-Based Personal Devices Using Deep Learning," IEEE Access, vol. 11, pp. 20095-20113, 2023. [
DOI:10.1109/ACCESS.2023.3250180]