Volume 18, Issue 4 (Journal of Control, V.18, N.4 Winter 2025)                   JoC 2025, 18(4): 95-105 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Etaati S, Delrobaei M. Assessment of Individuals' Attention Levels Using Machine Learning and Analysis of Eye and Hand Movement Patterns in the Trail-Making Test. JoC 2025; 18 (4) :95-105
URL: http://joc.kntu.ac.ir/article-1-1056-en.html
1- K. N. Toosi University of Technology
Abstract:   (506 Views)
Attention, as one of the key cognitive processes, plays a central role in daily activities, learning, and human-environment interactions. Accurately and objectively assessing individuals' attention levels, particularly in dynamic and real-world situations, has always been a challenge. Traditional methods, such as self-report questionnaires or paper-based tests, often fail to capture momentary attention fluctuations or the impact of environmental factors. This study, aiming to provide a precise and efficient method, utilized the analysis of eye and hand movement patterns within the framework of the Trail-Making Test. Data from 42 healthy participants were collected while they performed the test. Their eye and hand movements were accurately measured using eye-tracking technology and mouse movement tracking. Features such as saccades, fixations, blinks, and mouse movement speed were extracted. A Random Forest model was then trained using these features to predict attention levels. The results indicate that the model achieved a coefficient of determination R² score of 72%, demonstrating its ability to predict attention levels accurately. These findings confirm that eye and hand movement patterns can serve as reliable indicators for attention assessment. Therefore, applying machine learning techniques to analyze eye and hand movement data presents a reliable approach for evaluating attention levels in real-world settings. Beyond its scientific and research significance, this approach has practical applications in various fields, including education, clinical psychology, and the design of human-computer interaction systems.
Full-Text [PDF 767 kb]   (33 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2024/11/27 | Accepted: 2025/03/10 | ePublished ahead of print: 2025/03/10 | Published: 2025/03/18

References
1. [1] A. Das, Z. Wu, I. Skrjanec, and A. M. Feit, "Shifting Focus with HCEye: Exploring the Dynamics of Visual Highlighting and Cognitive Load on User Attention and Saliency Prediction," Proc. ACM Hum.-Comput. Interact., vol. 8, no. ETRA, p. 236:1-236:18, May 2024, doi: 10.1145/3655610. [DOI:10.1145/3655610]
2. [2] F. Capozzi and A. Kingstone, "The effects of visual attention on social behavior," Social and Personality Psychology Compass, vol. 18, no. 1, p. e12910, 2024, doi: 10.1111/spc3.12910. [DOI:10.1111/spc3.12910]
3. [3] M. Esterman and D. Rothlein, "Models of sustained attention," Current Opinion in Psychology, vol. 29, pp. 174-180, Oct. 2019, doi: 10.1016/j.copsyc.2019.03.005. [DOI:10.1016/j.copsyc.2019.03.005]
4. [4] W. (Sophia) Deng and V. M. Sloutsky, "Selective attention, diffused attention, and the development of categorization," Cognitive Psychology, vol. 91, pp. 24-62, Dec. 2016, doi: 10.1016/j.cogpsych.2016.09.002. [DOI:10.1016/j.cogpsych.2016.09.002]
5. [5] S. A. Himi, M. Bühner, M. Schwaighofer, A. Klapetek, and S. Hilbert, "Multitasking behavior and its related constructs: Executive functions, working memory capacity, relational integration, and divided attention," Cognition, vol. 189, pp. 275-298, Aug. 2019, doi: 10.1016/j.cognition.2019.04.010. [DOI:10.1016/j.cognition.2019.04.010]
6. [6] N. Watier and M. Dubois, "The Effects of a Brief Mindfulness Exercise on Executive Attention and Recognition Memory," Mindfulness, vol. 7, no. 3, pp. 745-753, June 2016, doi: 10.1007/s12671-016-0514-z. [DOI:10.1007/s12671-016-0514-z]
7. [7] B. C. Wright, "What Stroop tasks can tell us about selective attention from childhood to adulthood," British Journal of Psychology, vol. 108, no. 3, pp. 583-607, 2017, doi: 10.1111/bjop.12230. [DOI:10.1111/bjop.12230]
8. [8] L. Gómez-de-Regil, "Assessment of Executive Function in Patients with Traumatic Brain Injury with the Wisconsin Card-Sorting Test," Brain Sciences, vol. 10, no. 10, Art. no. 10, Oct. 2020, doi: 10.3390/brainsci10100699. [DOI:10.3390/brainsci10100699]
9. [9] V. A. Filippetti, G. L. Krumm, and W. Raimondi, "Computerized versus manual versions of the Wisconsin Card Sorting Test: Implications with typically developing and ADHD children," Applied Neuropsychology: Child, July 2020, Accessed: Feb. 21, 2025. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/21622965.2019.1570198
10. [10] D. M. Laura, "Neural correlates of a standardized version of the trail making test in young and elderly adults: A functional near-infrared spectroscopy study," Neuropsychologia, vol. 56, pp. 271-279, Apr. 2014, doi: 10.1016/j.neuropsychologia.2014.01.019. [DOI:10.1016/j.neuropsychologia.2014.01.019]
11. [11] F. Zare, P. Sedighi, and M. Delrobaei, "Evaluating Attentional Impulsivity: A Biomechatronic Approach," IEEE Trans. Instrum. Meas., vol. 72, pp. 1-8, 2023, doi: 10.1109/TIM.2023.3292964. [DOI:10.1109/TIM.2023.3292964]
12. [12] T. Singh, M. Mohadikar, S. Gite, S. Patil, B. Pradhan, and A. Alamri, "Attention Span Prediction Using Head-Pose Estimation With Deep Neural Networks," IEEE Access, vol. 9, pp. 142632-142643, 2021, doi: 10.1109/ACCESS.2021.3120098. [DOI:10.1109/ACCESS.2021.3120098]
13. [13] Z. Trabelsi, F. Alnajjar, M. M. A. Parambil, M. Gochoo, and L. Ali, "Real-Time Attention Monitoring System for Classroom: A Deep Learning Approach for Student's Behavior Recognition," Big Data and Cognitive Computing, vol. 7, no. 1, Art. no. 1, Mar. 2023, doi: 10.3390/bdcc7010048. [DOI:10.3390/bdcc7010048]
14. [14] J. A. Mark, A. Curtin, A. E. Kraft, M. D. Ziegler, and H. Ayaz, "Mental workload assessment by monitoring brain, heart, and eye with six biomedical modalities during six cognitive tasks," Front. Neuroergonomics, vol. 5, Mar. 2024, doi: 10.3389/fnrgo.2024.1345507. [DOI:10.3389/fnrgo.2024.1345507]
15. [15] G. Juantorena, W. Berrios, M. C. Fernández, A. Ibanez, A. Petroni, and J. E. Kamienkowski, "Enhancing Cognitive Assessment: Integrating Hand and Eye Tracking in the Digital Trail-Making Test for Mild Cognitive Impairment," in Proceedings of the 2024 Symposium on Eye Tracking Research and Applications, in ETRA '24. New York, NY, USA: Association for Computing Machinery, June 2024, pp. 1-3. doi: 10.1145/3649902.3655648. [DOI:10.1145/3649902.3655648]
16. [16] L. Recker and C. H. Poth, "Test-retest reliability of eye tracking measures in a computerized Trail Making Test," Journal of Vision, vol. 23, no. 8, p. 15, Aug. 2023, doi: 10.1167/jov.23.8.15. [DOI:10.1167/jov.23.8.15]
17. [17] J. Chandrasekharan, A. Joseph, A. Ram, and G. Nollo, "ETMT: A Tool for Eye-Tracking-Based Trail-Making Test to Detect Cognitive Impairment," Sensors, vol. 23, no. 15, Art. no. 15, Jan. 2023, doi: 10.3390/s23156848. [DOI:10.3390/s23156848]
18. [18] L. Recker, R. M. Foerster, W. X. Schneider, and C. H. Poth, "Emphasizing speed or accuracy in an eye-tracking version of the Trail-Making-Test: Towards experimental diagnostics for decomposing executive functions," PLOS ONE, vol. 17, no. 9, p. e0274579, Sept. 2022, doi: 10.1371/journal.pone.0274579. [DOI:10.1371/journal.pone.0274579]
19. [19] I. Linari, G. E. Juantorena, A. Ibáñez, A. Petroni, and J. E. Kamienkowski, "Unveiling Trail Making Test: visual and manual trajectories indexing multiple executive processes," Sci Rep, vol. 12, no. 1, p. 14265, Aug. 2022, doi: 10.1038/s41598-022-16431-9. [DOI:10.1038/s41598-022-16431-9]
20. [20] K. Townshend and M. Bornschlegl, "Attention Control Scale (ACS)," in Handbook of Assessment in Mindfulness Research, O. N. Medvedev, C. U. Krägeloh, R. J. Siegert, and N. N. Singh, Eds., Cham: Springer International Publishing, 2022, pp. 1-18. doi: 10.1007/978-3-030-77644-2_85-1. [DOI:10.1007/978-3-030-77644-2_85-1]
21. [21] K. W. Brown and R. M. Ryan, "The benefits of being present: Mindfulness and its role in psychological well-being," Journal of Personality and Social Psychology, vol. 84, no. 4, pp. 822-848, 2003, doi: 10.1037/0022-3514.84.4.822. [DOI:10.1037/0022-3514.84.4.822]
22. [22] K. Hagen, "Activation during the Trail Making Test measured with functional near-infrared spectroscopy in healthy elderly subjects," NeuroImage, vol. 85, pp. 583-591, Jan. 2014, doi: 10.1016/j.neuroimage.2013.09.014. [DOI:10.1016/j.neuroimage.2013.09.014]
23. [23] L. L. Russell et al., "Eye movements in frontotemporal dementia: Abnormalities of fixation, saccades and anti-saccades," Alzheimer's & Dementia: Translational Research & Clinical Interventions, vol. 7, no. 1, p. e12218, Jan. 2021, doi: 10.1002/trc2.12218. [DOI:10.1002/trc2.12218]
24. [24] J. Li, G. Ngai, H. V. Leong, and S. C. F. Chan, "Multimodal human attention detection for reading from facial expression, eye gaze, and mouse dynamics," SIGAPP Appl. Comput. Rev., vol. 16, no. 3, pp. 37-49, Nov. 2016, doi: 10.1145/3015297.3015301. [DOI:10.1145/3015297.3015301]
25. [25] D. D. Salvucci and J. H. Goldberg, "Identifying fixations and saccades in eye-tracking protocols," in Proceedings of the 2000 symposium on Eye tracking research & applications, in ETRA '00. New York, NY, USA: Association for Computing Machinery, Nov. 2000, pp. 71-78. doi: 10.1145/355017.355028. [DOI:10.1145/355017.355028]
26. [26] B. Birawo and P. Kasprowski, "Review and Evaluation of Eye Movement Event Detection Algorithms," Sensors (Basel), vol. 22, no. 22, p. 8810, Nov. 2022, doi: 10.3390/s22228810. [DOI:10.3390/s22228810]
27. [27] S. Fu, D. Qin, D. Qiao, and G. T. Amariucai, "RUMBA-Mouse: Rapid User Mouse-Behavior Authentication Using a CNN-RNN Approach," in 2020 IEEE Conference on Communications and Network Security (CNS), June 2020, pp. 1-9. doi: 10.1109/CNS48642.2020.9162287. [DOI:10.1109/CNS48642.2020.9162287]
28. [28] C. Feher, Y. Elovici, R. Moskovitch, L. Rokach, and A. Schclar, "User identity verification via mouse dynamics," Information Sciences, vol. 201, pp. 19-36, Oct. 2012, doi: 10.1016/j.ins.2012.02.066. [DOI:10.1016/j.ins.2012.02.066]
29. [29] S. Khan, C. Devlen, M. Manno, and D. Hou, "Mouse Dynamics Behavioral Biometrics: A Survey," ACM Comput. Surv., vol. 56, no. 6, p. 154:1-154:33, Feb. 2024, doi: 10.1145/3640311. [DOI:10.1145/3640311]
30. [30] P. J. Kieslich, F. Henninger, D. U. Wulff, J. M. B. Haslbeck, and M. Schulte-Mecklenbeck, "Mouse-Tracking: A Practical Guide to Implementation and Analysis 1," in A Handbook of Process Tracing Methods, 2nd ed., Routledge, 2019. [DOI:10.31234/osf.io/zuvqa]
31. [31] Y. Deng, "Predicting and Analyzing Match Fluctuations Based on Random Forest Regression Algorithm," in 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA), June 2024, pp. 1490-1494. doi: 10.1109/ICIPCA61593.2024.10709310. [DOI:10.1109/ICIPCA61593.2024.10709310]
32. [32] L. Wang, X. Zhou, X. Zhu, Z. Dong, and W. Guo, "Estimation of biomass in wheat using random forest regression algorithm and remote sensing data," The Crop Journal, vol. 4, no. 3, pp. 212-219, June 2016, doi: 10.1016/j.cj.2016.01.008. [DOI:10.1016/j.cj.2016.01.008]
33. [33] L. M. C. Cabezas, M. P. Otto, R. Izbicki, and R. B. Stern, "Regression trees for fast and adaptive prediction intervals," Information Sciences, vol. 686, p. 121369, Jan. 2025, doi: 10.1016/j.ins.2024.121369. [DOI:10.1016/j.ins.2024.121369]
34. [34] E. E. McBride and J. M. Greeson, "Mindfulness, cognitive functioning, and academic achievement in college students:the mediating role of stress," Curr Psychol, vol. 42, no. 13, pp. 10924-10934, 2023, doi: 10.1007/s12144-021-02340-z. [DOI:10.1007/s12144-021-02340-z]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb