Volume 8, Issue 2 (Journal of Control, V.8, N.2 Summer 2014)                   JoC 2014, 8(2): 1-10 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moaveni B, Booyerzaman M. Design of Unknown Input Proportional-Integral Kalman Filter. JoC. 2014; 8 (2) :1-10
URL: http://joc.kntu.ac.ir/article-1-161-en.html
1- Iran university of science and technology
2- Iran University of Science and Technology
Abstract:   (4715 Views)
In this paper, we introduce the proportional-integral kalman filter for discrete time systems with unknown input. The Proportional-Integral observers (PIOs) have good performance in deal with uncertainty in model, while those cannot handle the effect of determinstic unknown inputs. On the other hand, the Unknown Input Kalman filter (UIKF) is sensitive to uncertianty, while it provides unbiased minimum-variance estimation in the presence of unknown input. Here, we introduce Unknown Input Proportional Integral Kalman filter (UIPIKF) as an unbiased minimum-variance estimator in the presence of uncertainty and unknown input in the model. Using a numerical example, the effectivness of the filrer is demonstrated.
Full-Text [PDF 815 kb]   (1473 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2014/10/13 | Accepted: 2015/02/4 | Published: 2015/02/4

Add your comments about this article : Your username or Email:

Send email to the article author

© 2020 All Rights Reserved | Journal of Control

Designed & Developed by : Yektaweb