Volume 11, Issue 3 (Journal of Control, V.11, N.3 Fall 2017)                   JoC 2017, 11(3): 25-34 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdi B, Mirzaei M, Rafatnia S, Akbari Alvanagh A. Analytical Design of Constrained Nonlinear Optimal Controller for Vehicle Active Suspension System considering the Limitation of Hydraulic Actuator . JoC. 2017; 11 (3) :25-34
URL: http://joc.kntu.ac.ir/article-1-397-en.html
1- Sahand University of Technology
Abstract:   (7845 Views)

In this paper, a constrained nonlinear optimal control law is analytically developed for vehicle active suspension system considering the limitation of hydraulic actuator. In the design of the controller, the nonlinear characteristics of spring and damper forces and hydraulic actuator are considered. The control input is the displacement of the hydraulic valve spool which is bounded in practice and its constraint should be considered in the design process. In the proposed method, the control problem is firstly transformed to a constrained nonlinear optimization problem by performing a performance index defined as a weighted combination of predicted responses of nonlinear suspension system and control input. Then, this equivalent constrained optimization problem is solved using Kuhn-Tucker theorem to find the constrained optimal control law. The derived control law is in the closed form which is easy to solve and implementation. The controller performance is evaluated through computer simulation of the vehicle suspension model excited by a random road input. The obtained result indicate a remarkable decrease of the body acceleration which leads to the ride comfort. Meanwhile, other suspension responses including suspension and tire deflections are in suitable ranges.  

Full-Text [PDF 1205 kb]   (2769 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2016/08/9 | Accepted: 2017/06/4 | Published: 2017/08/28

References
1. Mirzaei, M. and R. Hassannejad, (2007), "Application of genetic algorithms to optimum design of elasto-damping elements of a half-car model under random road excitations". Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 221(4): p. 515-526. [DOI:10.1243/14644193JMBD101]
2. Jalili, N. and E. Esmailzadeh, (2001), "Optimum active vehicle suspensions with actuator time delay". Journal of Dynamic Systems, Measurement, and Control. 123(1): p. 54-61. [DOI:10.1115/1.1345530]
3. Xiao, L. and Y. Zhu, (2015), "Sliding-mode output feedback control for active suspension with nonlinear actuator dynamics". Journal of Vibration and Control. 21(14): p. 2721-2738. [DOI:10.1177/1077546313514760]
4. ع. کرمی ملائی، (1395)، "طراحی کنترل کننده حالت لغزشی دینامیکی برای سیستم تعلیق فعال". مجله‌ی مهندسی مکانیک مدرس، دوره 16، شماره 2، ص ص51-58.
5. Marzbanrad, J., et al., (2004), "Stochastic optimal preview control of a vehicle suspension". Journal of sound and vibration. 275(3): p. 973-990. [DOI:10.1016/S0022-460X(03)00812-5]
6. Rao, L.G. and S. Narayanan, (2008), "Preview control of random response of a half-car vehicle model traversing rough road". Journal of Sound and Vibration. 310(1): p. 352-365.
7. Chen, H. and K.-H. Guo, (2005), "Constrained H∞ control of active suspensions: an LMI approach". IEEE Transactions on Control Systems Technology. 13(3): p. 412-421. [DOI:10.1109/TCST.2004.841661]
8. Du, H., W. Li, and N. Zhang, (2012), "Integrated seat and suspension control for a quarter car with driver model. Vehicular Technology", IEEE Transactions on. 61(9): p. 3893-3908.
9. Kim, C. and P. Ro, (1998), "A sliding mode controller for vehicle active suspension systems with non-linearities". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 212(2): p. 79-92. [DOI:10.1243/0954407981525812]
10. Alleyne, A. and J.K. Hedrick, (1995), "Nonlinear adaptive control of active suspensions. Control Systems Technology", IEEE Transactions on. 3(1): p. 94-101. [DOI:10.1109/87.370714]
11. Chien, T., et al., (2009), "Almost disturbance decoupling and tracking control for multi-input multi-output non-linear uncertain systems: application to a half-car active suspension system". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 223(2): p. 215-228. [DOI:10.1243/09596518JSCE647]
12. Li, T.-H.S., C. Huang, and C. Chen, (2010), "Almost disturbance decoupling control of MIMO nonlinear system subject to feedback linearization and a feedforward neural network: application to half-car active suspension system". International Journal of Automotive Technology. 11(4): p. 581-592. [DOI:10.1007/s12239-010-0070-9]
13. Fateh, M.M. and S.S. Alavi, (2009), "Impedance control of an active suspension system". Mechatronics. 19(1): p. 134-140. [DOI:10.1016/j.mechatronics.2008.05.005]
14. Lin, J., et al., (2009), "Enhanced fuzzy sliding mode controller for active suspension systems". Mechatronics. 19(7): p. 1178-1190. [DOI:10.1016/j.mechatronics.2009.03.009]
15. Gordon, T., (1995), "Non-linear optimal control of a semi-active vehicle suspension system". Chaos, Solitons & Fractals. 5(9): p. 1603-1617. [DOI:10.1016/0960-0779(94)00166-N]
16. Mirzaei, M., et al., (2008), "An optimal approach to non-linear control of vehicle yaw dynamics". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 222(4): p. 217-229. [DOI:10.1243/09596518JSCE444]
17. Mirzaeinejad, H. and M. Mirzaei, (2010), "A novel method for non-linear control of wheel slip in anti-lock braking systems". Control Engineering Practice. 18(8): p. 918-926. [DOI:10.1016/j.conengprac.2010.03.015]
18. Elijah, P., Optimization: Algorithms and consistent approximations. 1997, Springer Verlage Publications.
19. Naidu, D.S., Optimal control systems. 2002: CRC press.
20. Loxton, R., et al., (2009), "Optimal control problems with a continuous inequality constraint on the state and the control". Automatica. 45(10): p. 2250-2257. [DOI:10.1016/j.automatica.2009.05.029]
21. Mashayekhi, S., Y. Ordokhani, and M. Razzaghi, (2012), "Hybrid functions approach for nonlinear constrained optimal control problems". Communications in Nonlinear Science and Numerical Simulation. 17(4): p. 1831-1843. [DOI:10.1016/j.cnsns.2011.09.008]
22. Malekshahi, A. and M. Mirzaei, (2012), "Designing a non-linear tracking controller for vehicle active suspension systems using an optimization process". International Journal of Automotive Technology. 13(2): p. 263-271. [DOI:10.1007/s12239-012-0023-6]
23. Sun, W., H. Gao, and O. Kaynak, (2015), "Vibration isolation for active suspensions with performance constraints and actuator saturation". Mechatronics, IEEE/ASME Transactions on. 20(2): p. 675-683 [DOI:10.1109/TMECH.2014.2319355]
24. Rao, S.S. and S. Rao, Engineering optimization: theory and practice. 2009: John Wiley & Sons. [DOI:10.1002/9780470549124]
25. Patriksson, M., et al., Introduction to Continuous Optimization. 2013: Studentlitteratur

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2019 All Rights Reserved | Journal of Control

Designed & Developed by : Yektaweb