Volume 12, Issue 4 (Journal of Control, V.12, N.4 Winter 2019)                   JoC 2019, 12(4): 35-46 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabet M, Mohammadi Daniali H, Fathi A, Alizadeh E. Design and experimental comparison of a new attitude estimation algorithm for accelerated rigid body. JoC. 2019; 12 (4) :35-46
URL: http://joc.kntu.ac.ir/article-1-466-en.html
1- Babol Noshirvani University of Technology
2- Maleke Ashtar University of Technology
Abstract:   (5127 Views)

In this paper, using a new modeling, an Extended Kalman Filter (EKF) is presented for estimation of attitude (i.e. roll and pitch angles) and gyroscope sensor bias using a tri-axes acceleration and a tri-axes gyroscope. The algorithm is developed for accurate estimation of attitude in dynamic conditions and existence of external body acceleration. The external body acceleration estimation as the main source of attitude estimation error in dynamic conditions is very important in attitude estimation accuracy, but in the literatures, the error of the external body acceleration on attitude estimation has not been studied in different dynamic conditions. The paper deals to estimation of the gyroscope sensor bias in two rotational axes (roll and pitch), accurate attitude estimation in different dynamic conditions and estimation of external body acceleration. The proposed algorithm application for attitude, external body acceleration and gyroscope sensor bias is evaluated by quasi-static and dynamic experimental tests in high acceleration bound.

Full-Text [PDF 672 kb]   (1614 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2017/03/28 | Accepted: 2018/02/12 | ePublished ahead of print: 2018/10/6 | Published: 2019/05/4

1. [1] K. Li, L. Chang, and B. Hu, "Unscented Attitude Estimator Based on Dual Attitude Representations," IEEE Transactions on Instrumentation and Measurement, vol. 64, pp. 3564-3576, 2015. [DOI:10.1109/TIM.2015.2454631]
2. [2] H. G. d. Marina, F. J. Pereda, J. M. Giron-Sierra, and F. Espinosa, "UAV Attitude Estimation Using Unscented Kalman Filter and TRIAD," IEEE Transactions on Industrial Electronics, vol. 59, pp. 4465-4474, 2012. [DOI:10.1109/TIE.2011.2163913]
3. [3] L. Paull, S. Saeedi, M. Seto, and H. Li, "AUV navigation and localization: A review," IEEE Journal of Oceanic Engineering, vol. 39, pp. 131-149, 2014. [DOI:10.1109/JOE.2013.2278891]
4. [4] G. To and M. R. Mahfouz, "Quaternionic Attitude Estimation for Robotic and Human Motion Tracking Using Sequential Monte Carlo Methods With von Mises-Fisher and Nonuniform Densities Simulations," IEEE Transactions on Biomedical Engineering, vol. 60, pp. 3046-3059, 2013. [DOI:10.1109/TBME.2013.2262636]
5. [5] J. Vaganay, M. J. Aldon, and A. Fournier, "Mobile robot attitude estimation by fusion of inertial data," in Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on, 1993, pp. 277-282 vol.1.
6. [6] N. Barbour and G. Schmidt, "Inertial sensor technology trends," IEEE Sensors Journal, vol. 1, pp. 332-339, 2001. [DOI:10.1109/7361.983473]
7. [7] D. Roetenberg, H. J. Luinge, C. T. M. Baten, and P. H. Veltink, "Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, pp. 395-405, 2005. [DOI:10.1109/TNSRE.2005.847353]
8. [8] Y. S. Suh, "Orientation Estimation Using a Quaternion-Based Indirect Kalman Filter With Adaptive Estimation of External Acceleration," IEEE Transactions on Instrumentation and Measurement, vol. 59, pp. 3296-3305, 2010. [DOI:10.1109/TIM.2010.2047157]
9. [9] T. Harada, H. Uchino, T. Mori, and T. Sato, "Portable absolute orientation estimation device with wireless network under accelerated situation," in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, 2004, pp. 1412-1417 Vol.2. [DOI:10.1109/ROBOT.2004.1308022]
10. [10] X. Yun and E. R. Bachmann, "Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking," IEEE Transactions on Robotics, vol. 22, pp. 1216-1227, 2006. [DOI:10.1109/TRO.2006.886270]
11. [11] G. S. Faber, C.-C. Chang, P. Rizun, and J. T. Dennerlein, "A novel method for assessing the 3-D orientation accuracy of inertial/magnetic sensors," Journal of biomechanics, vol. 46, pp. 2745-2751, 2013. [DOI:10.1016/j.jbiomech.2013.07.029]
12. [12] D. Jurman, M. Jankovec, R. Kamnik, and M. Topič, "Calibration and data fusion solution for the miniature attitude and heading reference system," Sensors and Actuators A: Physical, vol. 138, pp. 411-420, 8/26/ 2007. [DOI:10.1016/j.sna.2007.05.008]
13. [13] P. Doostdar and J. Keighobadi, "Design and implementation of SMO for a nonlinear MIMO AHRS," Mechanical Systems and Signal Processing, vol. 32, pp. 94-115, 10// 2012. [DOI:10.1016/j.ymssp.2012.02.007]
14. [14] H. Sheng and T. Zhang, "MEMS-based low-cost strap-down AHRS research," Measurement, vol. 59, pp. 63-72, 1// 2015. [DOI:10.1016/j.measurement.2014.09.041]
15. [15] Y.-S. Suh, S.-K. Park, H.-J. Kang, and Y.-S. Ro, "Attitude Estimation Adaptively Compensating External Acceleration," JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 49, pp. 172-179, 2006. [DOI:10.1299/jsmec.49.172]
16. [16] J. K. Lee and E. J. Park, "Minimum-Order Kalman Filter With Vector Selector for Accurate Estimation of Human Body Orientation," IEEE Transactions on Robotics, vol. 25, pp. 1196-1201, 2009. [DOI:10.1109/TRO.2009.2017146]
17. [17] A. M. Sabatini, "Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing," IEEE Transactions on Biomedical Engineering, vol. 53, pp. 1346-1356, 2006. [DOI:10.1109/TBME.2006.875664]
18. [18] H. Rehbinder and X. Hu, "Drift-free attitude estimation for accelerated rigid bodies," Automatica, vol. 40, pp. 653-659, 4// 2004. [DOI:10.1016/j.automatica.2003.11.002]
19. [19] W. Chou, B. Fang, L. Ding, X. Ma, and X. Guo, "Two-step optimal filter design for the low-cost attitude and heading reference systems," IET Science, Measurement & Technology, vol. 7, pp. 240-248, 2013. [DOI:10.1049/iet-smt.2012.0100]
20. [20] X. Yun, E. R. Bachmann, and R. B. McGhee, "A Simplified Quaternion-Based Algorithm for Orientation Estimation From Earth Gravity and Magnetic Field Measurements," IEEE Transactions on Instrumentation and Measurement, vol. 57, pp. 638-650, 2008. [DOI:10.1109/TIM.2007.911646]
21. [21] H. J. Luinge and P. H. Veltink, "Measuring orientation of human body segments using miniature gyroscopes and accelerometers," Medical and Biological Engineering and Computing, vol. 43, pp. 273-282, 2005. [DOI:10.1007/BF02345966]
22. [22] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control: John Wiley & Sons, 2011. [DOI:10.1002/9781119994138]
23. [23] D. Titterton and J. L. Weston, Strapdown inertial navigation technology vol. 17: IET, 2004. [DOI:10.1049/PBRA017E]
24. [24] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches: John Wiley & Sons, 2006. [DOI:10.1002/0470045345]
25. [25] O. S. Salychev, Applied inertial navigation : problems and solutions. Moscow, Russia: BMSTU Press, 2004.
26. [26] R. E. Kalman, "A new approach to linear filtering and prediction problems," Journal of basic Engineering, vol. 82, pp. 35-45, 1960. [DOI:10.1115/1.3662552]
27. [27] R. Bucy, "Nonlinear filtering theory," IEEE Transactions on Automatic Control, vol. 10, pp. 198-198, 1965. [DOI:10.1109/TAC.1965.1098109]
28. [28] M. T. Sabet, A. R. Fathi, and H. R. Mohammadi Daniali, "Optimal design of the Own Ship maneuver in the bearing-only target motion analysis problem using a heuristically supervised Extended Kalman Filter," Ocean Engineering, vol. 123, pp. 146-153, 9/1/ 2016. [DOI:10.1016/j.oceaneng.2016.07.028]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb