[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 12، شماره 1 - ( مجله کنترل، جلد 12، شماره 1، بهار 1397 ) ::
جلد 12 شماره 1,1397 صفحات 1-11 برگشت به فهرست نسخه ها
طراحی قانون کنترل تعقیب مبتنی بر رویتگر برای کلاسی از سیستم‌های فازی چندجمله‌ای
روزبه سلیمی طاری1، علی معرفیان پور* 1
1- دانشگاه آزاد اسلامی واحد علوم و تحقیقات
چکیده:   (1473 مشاهده)

در این مقاله قانون کنترل تعقیب برای کلاسی از سیستم های فازی چندجمله ای طراحی می شود. قانون کنترل از دو بخش رویتگر و فیدبک حالت تشکیل شده است. با استفاده از یک رویتگر فازی چندجمله ای، بردار حالت سیستم تخمین زده می­شود و بهره فیدبک چندجمله­ای، از بردار حالت تخمین زده شده برای تحقق قانون کنترل استفاده می­کند. قانون کنترل فازی چندجمله­ای، بردار حالت فرایند را به تعقیب از بردار حالت یک مدل مرجع پایدار تحت شاخص نرم بینهایت وادار می­کند. شرایط کافی برای تعیین پارامترهای قانون کنترل در قالب یک برنامه مجموع مربعات ارائه خواهد شد. برای نشان دادن کارایی روش ارائه شده طراحی قانون کنترل و شبیه­سازی در قالب چند مثال انجام می­شود.

واژه‌های کلیدی: سیستم های فازی چندجمله ای، قانون کنترل تعقیب، رویتگر چندجمله ای، بهره فیدبک چندجمله ای، شاخص نرم بی‌نهایت، مجموع مربعات.
متن کامل [PDF 767 kb]   (627 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۶/۲/۲۶ | پذیرش: ۱۳۹۶/۷/۱۳ | انتشار: ۱۳۹۶/۱۲/۴
فهرست منابع
1. Z. Wang, R. Lu, and H. Wang, "Finite-Time Trajectory Tracking Control of a Class of Nonlinear Discrete-Time Systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, pp. 1679-1687, 2017. [DOI:10.1109/TSMC.2017.2663523]
2. [2] Y. F. Gao, X. M. Sun, C. Wen, and W. Wang, "Adaptive Tracking Control for a Class of Stochastic Uncertain Nonlinear Systems With Input Saturation," IEEE Transactions on Automatic Control, vol. 62, pp. 2498-2504, 2017. [DOI:10.1109/TAC.2016.2600340]
3. [3] H. Yang, X. Fan, P. Shi, and C. Hua, "Nonlinear Control for Tracking and Obstacle Avoidance of a Wheeled Mobile Robot With Nonholonomic Constraint," IEEE Transactions on Control Systems Technology, vol. 24, pp. 741-746, 2016.
4. [4] G. Wen, W. Yu, Y. Xia, X. Yu, and J. Hu, "Distributed Tracking of Nonlinear Multiagent Systems Under Directed Switching Topology: An Observer-Based Protocol," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, pp. 869-881, 2017. [DOI:10.1109/TSMC.2016.2564929]
5. [5] H. O. Wang, K. Tanaka, and M. F. Griffin, "An approach to fuzzy control of nonlinear systems: stability and design issues," IEEE Transactions on Fuzzy Systems, vol. 4, pp. 14-23, 1996. [DOI:10.1109/91.481841]
6. [6] K. Tanaka and H. O. Wang, "Fuzzy regulators and fuzzy observers: a linear matrix inequality approach," in Proceedings of the 36th IEEE Conference on Decision and Control, 1997, pp. 1315-1320 vol.2. [DOI:10.1109/CDC.1997.657640]
7. [7] K. Tanaka, T. Ikeda, and H. O. Wang, "Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs," IEEE Transactions on Fuzzy Systems, vol. 6, pp. 250-265, 1998. [DOI:10.1109/91.669023]
8. [8] M. C. M. Teixeira, E. Assunção, and H. C. Pietrobom, "On relaxed LMI-based designs for fuzzy regulators and fuzzy observers," in 2001 European Control Conference (ECC), 2001, pp. 120-125.
9. [9] M. C. M. Teixeira, E. Assuncao, and R. G. Avellar, "On relaxed LMI-based designs for fuzzy regulators and fuzzy observers," IEEE Transactions on Fuzzy Systems, vol. 11, pp. 613-623, 2003. [DOI:10.1109/TFUZZ.2003.817840]
10. [10] T. Chung-Shi, C. Bor-Sen, and U. Huey-Jian, "Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model," IEEE Transactions on Fuzzy Systems, vol. 9, pp. 381-392, 2001. [DOI:10.1109/91.928735]
11. [11] G. H. Chang and J. C. Wu, "Robust Tracking Control Design for Nonlinear Systems via Fuzzy Observer," in 2012 Fifth International Symposium on Computational Intelligence and Design, 2012, pp. 366-369. [DOI:10.1109/ISCID.2012.243]
12. [12] M. H. Asemani and V. J. Majd, "A robust H∞ observer-based controller design for uncertain T–S fuzzy systems with unknown premise variables via LMI," Fuzzy Sets and Systems, vol. 212, pp. 21-40, 2013. [DOI:10.1016/j.fss.2012.07.008]
13. [13] C. Lin, Q.-G. Wang, and T. Heng Lee, "Improvement on observer-based control for T–S fuzzy systems," Automatica, vol. 41, pp. 1651-1656, 2005. [DOI:10.1016/j.automatica.2005.04.004]
14. [14] C.-S. Tseng and C.-K. Hwang, "Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances," Fuzzy Sets and Systems, vol. 158, pp. 164-179, 2007. [DOI:10.1016/j.fss.2006.09.014]
15. [15] H. Dahmani, O. Pagès, A. E. Hajjaji, and N. Daraoui, "Observer-Based Robust Control of Vehicle Dynamics for Rollover Mitigation in Critical Situations," IEEE Transactions on Intelligent Transportation Systems, vol. 15, pp. 274-284, 2014. [DOI:10.1109/TITS.2013.2281135]
16. [16] H. Dahmani, O. Pagès, and A. E. Hajjaji, "Observer-Based State Feedback Control for Vehicle Chassis Stability in Critical Situations," IEEE Transactions on Control Systems Technology, vol. 24, pp. 636-643, 2016.
17. [17] P. Bergsten, R. Palm, and D. Driankov, "Observers for Takagi-Sugeno fuzzy systems," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 32, pp. 114-121, 2002. [DOI:10.1109/3477.979966]
18. [18] L. Li, S. X. Ding, J. Qiu, Y. Yang, and D. Xu, "Fuzzy Observer-Based Fault Detection Design Approach for Nonlinear Processes," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. PP, pp. 1-12, 2016.
19. [19] L. Li, S. X. Ding, J. Qiu, and Y. Yang, "Real-Time Fault Detection Approach for Nonlinear Systems and its Asynchronous T-S Fuzzy Observer-Based Implementation," IEEE Transactions on Cybernetics, vol. 47, pp. 283-294, 2017.
20. [20] Y. Wu, J. Dong, X. J. Li, and G. H. Yang, "A new fault detection observer scheme for T-S fuzzy systems with unmeasurable variables," in 2016 12th World Congress on Intelligent Control and Automation (WCICA), 2016, pp. 120-125. [DOI:10.1109/WCICA.2016.7578733]
21. [21] Y. Yang, S. X. Ding, and L. Li, "On observer-based fault detection for nonlinear systems," Systems & Control Letters, vol. 82, pp. 18-25, 2015. [DOI:10.1016/j.sysconle.2015.05.004]
22. [22] L. Li, S. X. Ding, Y. Yang, and Y. Zhang, "Robust fuzzy observer-based fault detection for nonlinear systems with disturbances," Neurocomputing, vol. 174, Part B, pp. 767-772, 2016.
23. [23] T. Agustinah, A. Jazidie, M. Nuh, and D. Haiping, "Fuzzy tracking control design using observer-based stabilizing compensator for nonlinear systems," in 2010 International Conference on System Science and Engineering, 2010, pp. 275-280. [DOI:10.1109/ICSSE.2010.5551718]
24. [24] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, "A Sum of Squares Approach to Stability Analysis of Polynomial Fuzzy Systems," in 2007 American Control Conference, 2007, pp. 4071-4076. [DOI:10.1109/ACC.2007.4282579]
25. [25] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, "Stabilization of Polynomial Fuzzy Systems via a Sum of Squares Approach," in 2007 IEEE 22nd International Symposium on Intelligent Control, 2007, pp. 160-165. [DOI:10.1109/ISIC.2007.4450878]
26. [26] K. Tanaka, H. Ohtake, and H. O. Wang, "Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, pp. 561-567, 2009. [DOI:10.1109/TSMCB.2008.2006639]
27. [27] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, "A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems," IEEE Transactions on Fuzzy Systems, vol. 17, pp. 911-922, 2009. [DOI:10.1109/TFUZZ.2008.924341]
28. [28] A. Sala and C. Arino, "Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach," IEEE Transactions on Fuzzy Systems, vol. 17, pp. 1284-1295, 2009. [DOI:10.1109/TFUZZ.2009.2029235]
29. [29] K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O. Wang, "Polynomial Fuzzy Observer Designs: A Sum-of-Squares Approach," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, pp. 1330-1342, 2012. [DOI:10.1109/TSMCB.2012.2190277]
30. [30] A. Sala, J. L. Pitarch, M. Bernal, A. Jaadari, and T. M. Guerra, "Fuzzy Polynomial observers," IFAC Proceedings Volumes, vol. 44, pp. 12772-12776, 2011. [DOI:10.3182/20110828-6-IT-1002.02441]
31. [31] C. Liu, H. K. Lam, X. Ban, and X. Zhao, "Design of polynomial fuzzy observer–controller with membership functions using unmeasurable premise variables for nonlinear systems," Information Sciences, vol. 355–356, pp. 186-207, 2016. [DOI:10.1016/j.ins.2016.03.038]
32. [32] H. Han, J. Chen, and H. R. Karimi, "State and disturbance observers-based polynomial fuzzy controller," Information Sciences, vol. 382–383, pp. 38-59, 2017. [DOI:10.1016/j.ins.2016.12.006]
33. [33] S. Prajna, A. Papachristodoulou, and W. Fen, "Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach," in 2004 5th Asian Control Conference (IEEE Cat. No.04EX904), 2004, pp. 157-165 Vol.1.
34. [34] A. Papachristodoulou and S. Prajna, "A tutorial on sum of squares techniques for systems analysis," in Proceedings of the 2005, American Control Conference, 2005., 2005, pp. 2686-2700 vol. 4. [DOI:10.1109/ACC.2005.1470374]
35. [35] F. Delmotte, M. Dambrine, S. Delrot, and S. Lalot, "Fouling detection in a heat exchanger: A polynomial fuzzy observer approach," Control Engineering Practice, vol. 21, pp. 1386-1395, 2013. [DOI:10.1016/j.conengprac.2013.06.004]
36. [36] H. K. Lam and H. Li, "Output-Feedback Tracking Control for Polynomial Fuzzy-Model-Based Control Systems," IEEE Transactions on Industrial Electronics, vol. 60, pp. 5830-5840, 2013. [DOI:10.1109/TIE.2012.2229679]
37. [37] Z. Chen, B. Zhang, H. Li, and J. Yu, "Tracking control for polynomial fuzzy networked systems with repeated scalar nonlinearities," Neurocomputing, vol. 171, pp. 185-193, 2016. [DOI:10.1016/j.neucom.2015.06.030]
38. [38] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, "Introducing SOSTOOLS: a general purpose sum of squares programming solver," in Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 2002, pp. 741-746 vol.1. [DOI:10.1109/CDC.2002.1184594]
39. [35] S. Boyd. et. al., Linear Matrix Inequalities in System and Control Theory, in Applied Mathematics, vol. 15, PHL:SIAM, 1994.
40. [40] C.-W. Park, C.-H. Lee, and M. Park, "Design of an adaptive fuzzy model based controller for chaotic dynamics in Lorenz systems with uncertainty," Information Sciences, vol. 147, pp. 245-266, 2002. [DOI:10.1016/S0020-0255(02)00271-2]
41. H. Ohtake, K. Tanaka, and H. O. Wang, "Fuzzy modeling via sector nonlinearity concept," in Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), 2001, pp. 127-132. [DOI:10.1109/NAFIPS.2001.944239]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA code


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salimi Tari R, Moarefianpour A. Observer-Based Tracking Control Design for a Class of Fuzzy Polynomial Systems. JoC. 2018; 12 (1) :1-11
URL: http://joc.kntu.ac.ir/article-1-484-fa.html

سلیمی طاری روزبه، معرفیان پور علی. طراحی قانون کنترل تعقیب مبتنی بر رویتگر برای کلاسی از سیستم‌های فازی چندجمله‌ای. مجله کنترل. 1397; 12 (1) :1-11

URL: http://joc.kntu.ac.ir/article-1-484-fa.html



دوره 12، شماره 1 - ( مجله کنترل، جلد 12، شماره 1، بهار 1397 ) برگشت به فهرست نسخه ها
مجله کنترل Journal of Control
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 3764