دوره 13، شماره 3 - ( مجله کنترل، جلد 13، شماره 3، پاییز 1398 )                   جلد 13 شماره 3,1398 صفحات 41-50 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naseh D, Pariz N, Vahidian Kamyad A. Stability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations. JoC. 2019; 13 (3) :41-50
URL: http://joc.kntu.ac.ir/article-1-517-fa.html
ناصح داود، پریز ناصر، وحیدیان کامیاد علی. تحلیل پایداری سیستم های غیرخطی هایبرید تاخیری توصیف شده با معادلات دیفرانسیل فازی ضربه ای. مجله کنترل. 1398; 13 (3) :41-50

URL: http://joc.kntu.ac.ir/article-1-517-fa.html


1- دانشگاه فردوسی مشهد
چکیده:   (958 مشاهده)
در این مقاله معیارهایی برای بررسی پایداری سیستم های غیرخطی هایبرید دارای تاخیر زمانی توصیف شده با معادلات دیفرانسیل فازی ضربه ای ارائه می گردد. ابتدا قضیه مقایسه سیستم دیفرانسیل فازی با سیستم دیفرانسیل معمولی در N بعد بر اساس مفهوم غیرنزولی شبه یکنوای فوقانی بیان می گردد. در اینجا برای تحلیل پایداری سیستم های دینامیکی فازی، توابع شبه لیاپانوف برداری تعریف می گردند. سپس با استفاده از این توابع به همراه قضیه مقایسه جدید برخی قضایا برای بررسی انواع مفاهیم پایداری (پایداری نهایی، پایداری مجانبی، پایداری قوی و پایداری یکنواخت) برای سیستم دیفرانسیل فازی هایبرید ضربه ای دارای تاخیر مطرح می شوند. علاوه بر آن، قضایای پایداری کاربردی بر حسب دو معیار ارائه شده و به اثبات می رسند. در انتها مثالی دوبعدی برای نحوه بکارگیری قضایای پایداری مطرح و پایداری یک سیستم دیفرانسیل فازی دارای تاخیر بررسی می گردد. در نهایت با مثالی عملی در حوزه پزشکی، پلی بین مبانی ریاضی تحقیق و کاربرد عملی پژوهش تبیین می کنیم.
متن کامل [PDF 527 kb]   (131 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۶/۵/۳۱ | پذیرش: ۱۳۹۷/۳/۹

فهرست منابع
1. J.P. Lasalle, S.Lefschetz: Stability by Lyapunov's Direct Method with Applications, Academic Press, New York, NY, USA, 1961.
2. [2] N. Rouche, P. Habets, M. Laloy: Stability Theory by Lyapunov's Direct Method, Springer, New York, NY, USA, 1997.
3. [3] V. Lakshmikantham, X.Z. Liu: Stability Analysis in Terms of Two Measures, World Scientific, Singapore, 1993. [DOI:10.1142/2018]
4. [4] S.M.S. de Godoy, M.A. Bena: Stability criteria in terms of two measures for functional differential equations, Applied Mathematics Letters 18 (6) (2005) 701-706. [DOI:10.1016/j.aml.2004.05.011]
5. [5] P. Wang, H. Lian: On the stability in terms of two measures for perturbed impulsive integro-differential equations, Journal of Mathematical Analysis and Applications 313 (2) (2006) 642-653. [DOI:10.1016/j.jmaa.2005.06.027]
6. [6] P. Wang, Z. Zhan: Stability in terms of two measures of dynamic system on time scales, Computers and Mathematics with Applications 62 (12) (2011) 4717-4725. [DOI:10.1016/j.camwa.2011.10.062]
7. [7] C.H. Kou, S.N. Zhang: Practical stability for finite delay differential systems in terms of two measures, Acta Math. Appl. Sinica 25 (3) (2002) 476-483.
8. [8] V. Lakshmikantham, V.M. Matrosov, S. Sivasundaram: Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic, Dordrecht, 1991. [DOI:10.1007/978-94-015-7939-1]
9. [9] P. Wang, W. Sun: Practical stability in terms of two measures for set differential equations on time scales, The Scientific World Journal (2014), Article ID 241034, 7 pages. [DOI:10.1155/2014/241034]
10. [10] D.D. Bainov, I.M. Stamova: On the practical stability of the solutions of impulsive systems of differential-difference equations with variable impulsive perturbations, J. Math. Anal. Appl. 200 (1996) 272-288. [DOI:10.1006/jmaa.1996.0204]
11. [11] Z.G. Luo, J.H. Shen: New Razumikhin type theorems for impulsive functional differential equations, Appl. Math. Comput. 125 (2002) 375-386. [DOI:10.1016/S0096-3003(00)00139-9]
12. [12] A.A. Soliman: Stability criteria of impulsive differential systems, Appl. Math. Comput. 134 (2003) 445-457. [DOI:10.1016/S0096-3003(01)00293-4]
13. [13] J.T. Sun: Stability criteria of impulsive differential system, Appl. Math. Comput. 156 (2004) 85-91. [DOI:10.1016/j.amc.2003.07.034]
14. [14] J.T. Sun,Y.P. Zhang: Impulsive control of a nuclear spin generator, J. Comput. Appl. Math. 157 (1) (2003) 235-242. [DOI:10.1016/S0377-0427(03)00454-0]
15. [15] J.T. Sun, Y.P. Zhang: Stability analysis of impulsive control systems, IEE Proc. Control Theory Appl. 150 (4) (2003) 331-334. [DOI:10.1049/ip-cta:20030599]
16. [16] J.T. Sun, Y.P. Zhang, Q.D. Wu: Less conservative conditions for asymptotic stability of impulsive control systems, IEEE Trans. Automat. Control 48 (5) (2003) 829-831. [DOI:10.1109/TAC.2003.811262]
17. [17] T. Yang: Impulsive Systems and Control: Theory and Applications, Nova Science Publishers, Huntington NY, 2001.
18. [18] S.G. Hristova, A. Georgieva: Practical stability in terms of two measures for impulsive differential equations with supremum, Int. J. Diff. Eq. 2011 (2011) Article ID 703189, 13 pages. [DOI:10.1155/2011/703189]
19. [19] S. Dilbaj, Srivastava S.K.: Strict stability criteria for impulsive differential systems, Advance in Differential equation and Control Processes 10 (2012) 171-182.
20. [20] S. Dilbaj, Srivastava S.K.: Strict stability criteria for impulsive functional differential equations, Lecture Notes in Engineering and Computer Science 2197 (2012) 169-171.
21. [21] J.S. Yu: Stability for nonlinear delay differential equations of unstable type under impulsive perturbations, Applied Mathematics Letters 14 (2001) 849-857. [DOI:10.1016/S0893-9659(01)00055-6]
22. [22] Y. Zhang, J.T. Sun: Boundedness of the solutions of impulsive differential systems with time-varying delay, Appl. Math. Comput. 154 (1) (2004) 279-288. [DOI:10.1016/S0096-3003(03)00712-4]
23. [23] Y. Zhang, J. Sun: Eventual practical stability of impulsive differential equations with time delay in terms of two measurements, J. Comput. and Appl. Math. 176 (2005) 223-229. [DOI:10.1016/j.cam.2004.07.014]
24. [24] V. Lakshmikantham, S. Leela: Stability theory of fuzzy differential equations via differential inequalities, Mathematical Inequalities and Applications 2 (1999) 551-559. [DOI:10.7153/mia-02-46]
25. [25] V. Lakshmikantham, S. Leela: Fuzzy differential systems and the new concept of stability, Nonlinear Dynamics and Systems Theory 1 (2) (2001) 111-119.
26. [26] V. Lakshmikantham, R. Mohapatra: Basic properties of solutions of fuzzy differential equations, Nonlinear Studied 8 (2001) 113-124.
27. [27] C. Yakar, M. Cicek, M.B. Gucen: Practical stability, boundedness criteria and Lagrange stability of fuzzy differential systems, J. Computers and Mathematics with Applications 64 (2012) 2118-2127. [DOI:10.1016/j.camwa.2012.04.008]
28. [28] S. Zhang, J. Sun: Stability of fuzzy differential equations with the second type of Hukuhara derivative, IEEE Transaction on Fuzzy Systems (2014). [DOI:10.1109/TFUZZ.2014.2353134]
29. [29] B. Bede, S. G. Gal: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Sys. 151 (3) (2005) 581-599. [DOI:10.1016/j.fss.2004.08.001]
30. [30] S. Sun, Z. Han, E. Akin-Bohner, P Zhao, Practical stability in terms of two measures for hybrid dynamic systems, Bulletin of the Polish academy of sciences, Mathematics (210) (2010). [DOI:10.4064/ba58-3-5]
31. [31] P. Wang, X. Liu, Practical stability of impulsive hybrid differential systems in terms of two measures on time scales, Nonlinear Analysis 65 (2006) 2035-2042. [DOI:10.1016/j.na.2005.08.034]
32. [32] Yu Zhang, Exponential stability of impulsive discrete systems with time delays, Applied Mathematics Letters 25 (2012) 2290-2297. [DOI:10.1016/j.aml.2012.06.019]
33. [33] P. Wang, M. Wu, Y. Wu, Practical stability in terms of two measures for discrete hybrid systems, Nonlinear Analysis: Hybrid systems 2 (2008) 58-64. [DOI:10.1016/j.nahs.2007.01.005]
34. [34] A. Routes, "Drug absorption, distribution and elimination. Pharmacokinetics", 2015. [Online]. Available: http://www.columbia.edu/itc/gsas/g9600/2004/GrazianoReadings/Drugabs. [Accessed: 10- Oct- 2017].
35. [35] Phrmacokinetics, [Online]. Available:http://coewww.rutgers.edu/classes/bme/bme305/BookChapters/Chap702Sep03.[Accessed: 10- Oct- 2017].
36. [36] H. Zarei, A. Kamyad and A. Heydari, "Fuzzy Modeling and Control of HIV Infection", Computational and Mathematical Methods in Medicine, vol. 2012, pp. 1-17, 2012. [DOI:10.1155/2012/893474]
37. [37] M. Mazandarani, N. Pariz and A. Vahidian Kamyad, "Granular Differentiability of Fuzzy-Number-Valued Functions", IEEE Transactions on Fuzzy Systems, pp. 1-1, 2017. [DOI:10.1109/TFUZZ.2017.2659731]
38. [38] L. Hu, X. Mao and Y. Shen, "Stability and boundedness of nonlinear hybrid stochastic differential delay equations", Systems & Control Letters, vol. 62, no. 2, pp. 178-187, 2013. [DOI:10.1016/j.sysconle.2012.11.009]
39. [39] C. Yakar, M. Çi̇çek and M. Gücen, "Practical stability, boundedness criteria and Lagrange stability of fuzzy differential systems", Computers & Mathematics with Applications, vol. 64, no. 6, pp. 2118-2127, 2012. [DOI:10.1016/j.camwa.2012.04.008]
40. [40] S. Zhang and J. Sun, "Stability of Fuzzy Differential Equations With the Second Type of Hukuhara Derivative", IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 1323-1328, 2015. [DOI:10.1109/TFUZZ.2014.2353134]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Control

Designed & Developed by : Yektaweb