Volume 13, Issue 2 (Journal of Control, V.13, N.2 Summer 2019)                   JoC 2019, 13(2): 67-80 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asghari A, Nasrollahi S, Ghahremani N. Implementation of Roll Angle and Angular Velocity Estimation Algorithm for a High-Speed Projectile Using Accelerometers Output Data. JoC. 2019; 13 (2) :67-80
URL: http://joc.kntu.ac.ir/article-1-573-en.html
1- malek-e- ashtar university
Abstract:   (60 Views)
In this paper, implementation of roll angle and angular velocity estimation algorithm for a high-speed projectile using the fusion of the accelerometers output data is proposed. The reason for the use of accelerometers instead of gyros and magnetometer is the high error of the MEMS gyroscope for high speed and the low accuracy of the magnetometer due to the presence of Non-Earth magnetic fields and the effects of hard and soft iron. After expression of the proposed algorithm, the implementation process is explained. In this process, an electric motor is used to simulate the projectile roll and two accelerometers are used to measure angular velocity and acceleration. Two constant and variable velocity scenarios have been investigated in both online and offline modes. Both extended Kalman Filter and adaptive extended Kalman filter estimators have been used to estimate the rolling angular velocity. Finally, the comparison of these two methods for the rolling angular velocity and roll angle, indicates a better performance for the adaptive estimator.
Full-Text [PDF 2244 kb]   (26 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2018/04/10 | Accepted: 2018/08/18

References
1. Xing-cheng, L. I., and Z. H. A. N. G. Shuang-biao. "Stability study of spiral motion based on calculated flight data." Transactions of Beijing Institute of Technology 12 ,006, 2012.
2. Algrain, Marcelo C. "Accelerometer-based platform stabilization." Acquisition, Tracking, and Pointing V. Vol. 1482. International Society for Optics and Photonics, 1991. [DOI:10.1117/12.45711]
3. Chen, Jeng-Heng, Sou-Chen Lee, and Daniel B. DeBra. "Gyroscope free strapdown inertial measurement unit by six linear accelerometers." Journal of Guidance, Control, and Dynamics 17.2 ,pp. 286-290 ,1994. [DOI:10.2514/3.21195]
4. Ghasemzadeh, Vahid, and Mohammad M. Arefi. "Design, modeling, and simulation of an INS system using an asymmetric structure of six accelerometers and its error analysis in the ECEF frame." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231.13, pp. 2345-2361 ,2017. [DOI:10.1177/0954410016662059]
5. Park, Sungsu, Chin-Woo Tan, and Joohyuk Park. "A scheme for improving the performance of a gyroscope-free inertial measurement unit." Sensors and Actuators A: Physical 121.2, pp. 410-420, 2005. [DOI:10.1016/j.sna.2005.03.060]
6. وحید قاسم زاده، جعفر حیرانی نوبری، "آنالیز خطای یک سیستم ناوبری اینرسی مبتنی بر شتاب سنج و بدون استفاده از ژیروسکوپ" مجله کنترل، جلد ۵، شماره ۳، پاییز ۱۳۹۰.
7. Buhmann, A., et al. "A GPS aided full linear accelerometer-based gyroscope-free navigation system." Position, Location, And Navigation Symposium, 2006 IEEE/ION. IEEE, 2006.
8. Schopp, P., et al. "Sensor fusion algorithm and calibration for a gyroscope-free IMU." Procedia Chemistry 1.1, pp. 1323-1326, 2009. [DOI:10.1016/j.proche.2009.07.330]
9. Parsa, Kourosh, Ty A. Lasky, and Bahram Ravani. "Design and implementation of a mechatronic, all-accelerometer inertial measurement unit." IEEE/ASME Transactions on Mechatronics 12.6, pp. 640-650, 2007. [DOI:10.1109/TMECH.2007.910080]
10. Liu, Chaojun, et al. "An effective unscented Kalman filter for state estimation of a gyro-free inertial measurement unit." Position, Location and Navigation Symposium-PLANS 2014, 2014 IEEE/ION. IEEE, 2014. [DOI:10.1109/PLANS.2014.6851380]
11. Edwan, Ezzaldeen, Stefan Knedlik, and Otmar Loffeld. "Constrained angular motion estimation in a gyro-free IMU." IEEE Transactions on Aerospace and Electronic Systems 47.1, pp. 596-610, 2011. [DOI:10.1109/TAES.2011.5705694]
12. Liu, Chaojun, et al. "Design and analysis of gyro-free inertial measurement units with different configurations." Sensors and Actuators A: Physical 214, pp. 175-186, 2014. [DOI:10.1016/j.sna.2014.04.033]
13. Zou, Tian, et al. "A 6-DOF acceleration sensor with cylindrical configuration." Sensors and Actuators A: Physical 251, pp. 167-178, 2016. [DOI:10.1016/j.sna.2016.10.005]
14. WANG, Lei, et al. "The simulation and experiment research of inertial navigation system used for shell in high dynamic environment." Journal of Projectiles, Rockets, Missiles and Guidance 2 ,2009.
15. Mu, S. Z., et al. "Research on inertial measurement unit of high rotation vehicle." J. Ballistics 8, pp. 88-88, 2006.
16. Wu, Qingya, et al. "A novel high precision inertial measurement scheme and its optimization method for high-speed rotating ammunition." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 228.13, pp. 2553-2566, 2014. [DOI:10.1177/0954410014521056]
17. Akeila, Ehad, Zoran Salcic, and Akshya Swain. "Implementation, calibration and testing of GFINS models based on six-accelerometer cube." TENCON 2008-2008 IEEE Region 10 Conference. IEEE, 2008. [DOI:10.1109/TENCON.2008.4766567]
18. Lim, Geunwon, et al. "Estimation of angular velocity and acceleration by using 2 linear acceleration sensors." IFAC Proceedings Volumes 39.16, pp. 549-553, 2006. [DOI:10.3182/20060912-3-DE-2911.00096]
19. Zhao, J. B., Marcos Netto, and Lamine Mili. "A robust iterated extended Kalman filter for power system dynamic state estimation." IEEE Trans. Power Syst 32.4, pp. 3205-3216, 2017. [DOI:10.1109/TPWRS.2016.2628344]
20. Fathabadi, Vahid, et al. "Comparison of adaptive kalman filter methods in state estimation of a nonlinear system using asynchronous measurements." Proceedings of the World Congress on Engineering and Computer Science. Vol. 2. 2009.
21. La Scala, Barbara F., and Robert R. Bitmead. "Design of an extended Kalman filter frequency tracker." IEEE Transactions on Signal Processing 44.3, pp. 739-742, 1996. [DOI:10.1109/78.489052]
22. Dhaouadi, Rached, Ned Mohan, and Lars Norum. "Design and implementation of an extended Kalman filter for the state estimation of a permanent magnet synchronous motor." IEEE Transactions on Power Electronics 6.3, pp. 491-497, 1991. [DOI:10.1109/63.85891]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2019 All Rights Reserved | Journal of Control

Designed & Developed by : Yektaweb